Expressing Ideas through Computational Modelling™ DRAFT EDITION

STEMCBook

How to Author Learning Experiences using STEMCstudio

David Geo Holmes GeometryZen Press

STEMCbook

How to Author Learning Experiences using
STEMCstudio

David Geo Holmes

Version 2.180.22, 2025-02-23: Draft

Table of Contents

Introduction
Foreword
Who Should Read This Book
How To Report Bugs and Suggest Enhancements
About David Geo Holmes

1. Getting Started
1.1. Your First Project
1.2. How It Works
1.3. Writing and Calling Internal Modules
1.4. Using NPM Packages (a.k.a. External Modules or Libraries)
1.5. Summary

2. Learning Tools Interoperability
2.1. What is Learning Tools Interoperability?
2.2. Dynamic Registration
2.3. Deep Linking
2.4. Programming API
2.5. Summary

3. Useful STEM Libraries
3.1. 2D Scalable Vector Graphics with g20
3.2. 2D Diagramming with JsxGraph
3.3. 3D Graphics with Eight
3.4. Data Visualization with Plotly
3.5. Charting with Chart.js
3.6. Symbolic Mathematics using STEMCmicro
3.7. Rendering Mathematics in STEMCstudio
3.8. Rendering Mathematics with MathJax
3.9. Rendering Mathematics with KateX
3.10. Code Editing using monaco-editor
3.11. LMS Gradebook Integration
3.12. Numeric Vector and Geometric Algebra
3.13. Simulations and the Physics Engine
3.14. Summary

4. Application Frameworks
4.1. What is a Web Application Framework?
4.2. Nothing
4.3. Web Components
4.4. React
4.5. SolidJS

W W NN R R

11
14
15
21
22
22
23
24
27
30
31
31
37
45
52
56
60
65
66
68
71
76
80
84
88
89
89
89
89
89
93

4.6. Svelte 96

4.7. Summary 99
Appendix A: Authoring JavaScript Libraries 100
A.1. Best Practices 100
A.2. Step by Step Guide 101
A.3. Summary 115
Appendix B: Consuming ES6 Module format Libraries 117
B.1. Converting ES6 module format to System 117
B.2. Solution is System module format 117
B.3. Wrapping their modules 117
B.4. Consuming your package 119
B.5. Summary 122
Appendix C: Operator Overloading 123
C.1. What is Operator Overloading? 123
C.2. How it Works 123
C.3. Code transformation for Operator Overloading 123
C.4. Binary Operators 124
C.5. Unary Operators 125
C.6. Operator Precedence 125
C.7. Example Complex number class 125

C.8. Summary 126

Introduction

Foreword

STEMCstudio is a web-based educational tool for authoring STEM learning activities, such as
demonstrations and assignments, and for student project-based learning of science and math
through computational modeling. A STEM educational resource created using STEMCstudio may be
run either standalone, embedded in another web site as an IFrame, or embedded in a Learning
Management System using the LTI 1.3 protocol. Projects created with STEMCstudio are themselves
web applications using modern standards-based web technologies such as HTML, JavaScript, and
CSS. Using STEMCstudio, the complex software engineering tasks of building and deployment are
avoided, allowing the educator and student to focus on the educational problem domain.

The Learning Tools Interoperabilty (LTI) version 1.3 standard defines the next generation of content
creation for educational platforms by allowing external tools to be embedded securely as activities
in courses. Using this technology allows applications called tools to be plugged into the LMS
platform and safely interact with the LMS gradebook. STEMCstudio is one such tool and therefore
facilitates the creation of educational resources for deployment in an LMS.

Both STEMCstudio and LTI 1.3 technologies are powerful, especially when used together, but they
can be intimidating, and you may be left wondering how to get started, how they work, and how to
use them effectively.

Demystifying these technologies and getting you productive is what this book is all about.

¢ David Holmes

Who Should Read This Book

Educational Content Authors

Modern ventures are often characterized by teams of specialists working together towards a
common goal. There is every reason to believe that producing high quality educational content, just
like producing a modern web site, will be enhanced by a team approach. That being said, new
concepts are also pioneered by individuals who are motivated to go beyond their area of expertise
in order to produce novel outcomes.

For the aforementioned reasons, this book is dually targetted at both the team producing
educational content and the pioneer educator who is willing to learn the technical aspects needed
to bring instruction online.

Computational Modeling Students

STEMCstudio was originally written with the student in mind. The goal of STEMCstudio was to
enable Computational Modeling Experimentation for Students by lowering the Software
Engineering bar. In other words, configuring an application, executing the application, and
deploying it should be easy and the core task should be about the scientific model, translating it

into code, and not much more. But STEMCstudio does not attempt to produce a zero-code
experience which would reduce flexibility. instead, it achieves a low-code experience by being able
to use standard third-party and custom libraries. Because of the attention to standards and industry
best practices, it provides a high-quality developer programming experience that would be familiar
to a modern front-end web developer. The programming language used by STEMCstudio is an
industry standard, and so this book attempts to avoid being a programming tutorial. This book
instead focuses on those unique aspects of STEMCstudio that do not have explainations elsewhere.

How To Report Bugs and Suggest Enhancements

Report issues about this book in GitHub: https://github.com/geometryzen/stemcbook/issues

About David Geo Holmes

You can contact David at david.geo.holmes@gmail.com.

https://github.com/geometryzen/stemcbook/issues
mailto:david.geo.holmes@gmail.com

Chapter 1. Getting Started

This chapter will be about getting started with STEMCstudio.

1.1. Your First Project

In this section we’ll create a simple application in order to explore the essential aspects of the user
interface. Our main concern will be to launch the application, save it to GitHub, and reload it in
various ways.

Creating a New Project

Navigate to the STEMCstudio Home Page at https://stemcstudio.com

Il STEMCstudio x| + ~ = o x

& C & stemcstudio.com < « 0O & H

Examples User Guide Feedback Newsletter Videos

STEMCstudio e nel

3th thro

STEMCarXiv

|

Local Storage

Your do not have any projects in your Local Storage.

Figure 1. STEMCstudio Home Page

Press the Create a New Project button to begin creating a new STEMCstudio project.

https://stemcstudio.com

Create a New Project

Project 1

Figure 2. STEMCstudio New Project Dialog

Enter a description for your project, e.g. My First Project. The description is not critical but it may
make your project more searchable. It can also be changed later.

Choose a template for your application, that is to say, a working project that will be cloned to make
your new project.

Several templates are available for popular application frameworks as well as a minimal project
using just HTML and TypeScript:

Name Home Page

TypeScript https://typescriptlang.org

Solid]S https://solidjs.com

Icon
@ React https://react.dev

@ Svelte https://svelte.dev

To keep things simple, for this example, we’ll choose TypeScript to create an application that does
not use a framework, then press 0K.

You will land on the STEMCstudio Workspace page with your new project files listed in the Explorer
View.

https://typescriptlang.org
https://react.dev
https://solidjs.com
https://svelte.dev

L] STEMCstudio x|+ - - u] X

&« C & stemcstudio.com/workspace < % 0O {’ g

Figure 3. STEMCstudio Workspace
The following guide is provided as a reference to the controls in the Workspace Window.

Horizontally, across the top or the Workspace Window is the Main Toolbar:
1< (Hide Explorer) or q (Show Explorer) - toggles the visibility of the explorer view.

l_ (Hide Editors) or D (Show Editors) - toggles the visibility of the editors and the explorer
view.

Z (Launch Program), H (Stop Program) - toggles the execution of the program.

B (Hide Documentation) or (Show Documentation) - toggles the visibility of the rendering of the
README.md file.

. (Project Menu) - container for the project dropdown menu.
. (Cloud Menu) - container for the cloud dropdown menu.

* (Workspace Settings) - container for the workspace dropdown menu.

< (Share Menu) - container for the share dropdown menu.

Vertically, down the side of the Workspace Window:

B (Files) - Explorer mode showing files.

(171

BEE (Dependencies) - Explorer mode showing dependencies.

a (Usages) - Explorer mode showing usages of symbols in the code.

Horizontally, across the top of the Explorer View:

/* (Project Settings) - Used to configure the project build and linting
D (Labels and Tags) - Used to configure meta-data used for searching.
E+ (Add File) - Used to add a new file to the project.

1]
B4 (add Dependency) - Used to add an external package dependency to the project.

Click on the index.ts file in the Explorer View to open the corresponding editor.

I STEMCstudio x| 4+

&« C @& stemcstudio.com/workspace < x 0O ’3 :

STEMCstudio 1< i (2 B B~ @&~ £~ < v MyFirstProject

4 D

.onunload =

Figure 4. STEMCstudio Editor

The editor window contains some convenient functionality using the icons in the editor toolbar:

®\ (Increase Font Size)

e\ (Decrease Font Size)

AN (Fold)

V' (Unfold)

(Format Document)

E (Keyboard Shortcuts)

Feel free to explore the workspace, the buttons, and menus. I won’t cover every option here, most
of them will be familiar if you have used a modern IDE.

Launching the Project

Execute the program by pressing the Launch Program button, z , on the main toolbar.

The program web page will run side-by-side with the code.

il STEMCstudio x| +

& () @ stemcstudio.com/workspace

STEMCstudio B - & ;- < - MyFirstProject SenintoGitiub | O

@ @ -
Hello, World!

B 4 D =
a

Figure 5. STEMCstudio Live Coding

Change the greeting name parameter to "Your Name". Notice that any changes you make to the
editor code are reflected almost immediately in the Live Code View.

End the program by pressing the Stop Program button, H .

Now return to the Home Page by clicking STEMCstudio brand icon, |k Cstudio |

Loading the Project from Local Storage

If you have been following along, you will now be on the STEMCstudio Home Page with your
project details displayed under Local Storage.

il STEMCstudio x| +

& (&) & stemcstudio.com

Examples User Guide Feedback Newsletter Videos

STEMCstudio

STEMCarXiv

Local Storage

‘ David Geo Holmes ‘

Aug 30, 2022

Figure 6. STEMCstudio Project in Local Storage

Your project is now stored in your current browser on your current machine and nowhere else.
That’'s fine for making changes locally, but you will want to save your work permanently.
STEMCstudio allows you to save your work to a GitHub Gist in your GitHub account. If you don’t
have a GitHub account, now is a good time to sign up at https./github.com.

Saving the Project as a GitHub Gist

Click the description of your project in Local Storage to re-open your project in the workspace.
Notice that the location URL in your browser is simply stemcstudio/workspace. Press the Sign in to

You will be presented with a popup page from GitHub that allows you to sign in.

https://github.com

Sign in to GitHub - GitHub - Google Chr... — O X

& github.com/login?client id=83d011e93e0be33af... o

O

Sign in to GitHub
to continue to STEMCstudio

Usemame or email address

stemcstudio

Password Forgot password?

MNew to GitHub? Create an account .

Terms Privacy Security Contact GitHub

Figure 7. STEMCstudio GitHub Sign In Page
Enter your GitHub Username and Password and press the Sign in button.

You will be redirected back to STEMCstudio. To save your project as a Gist, click the Upload Project

to GitHub menu item under the cloud menu, ‘ Your project will be saved, a new Gist identifier
will be assigned, and STEMCstudio will reload the project. Notice that the browser URL is now
stemcstudio.com/gists/your-gist-identifier

Anytime that you wish to save your project to GitHub after making changes, simply ensure that you
are signed in and upload it.

Loading the Project from GitHub

Return from the workspace back to the STEMCstudio Home Page. Your project is in Local Storage
but it is also saved in GitHub.

Whenever your project is in Local Storage, STEMCstudio will load it from there

A and not from GitHub. In other words, the copy in Local Storage is your working
copy. Be careful not to lose your changes if you are working on more than one
computer.

Delete the copy in Local Storage by clicking the x symbol next to the project description.

To retrieve your project from GitHub, click the Download button on the Home Page.

e The Download button on the Home Page will only be be visible if you are signed in
to GitHub.

Click on the description of the project that you wish to download. You will be returned to the
workspace with your project loaded.

Publishing and Finding the Project using the STEMCarXiv

STEMCstudio allows you to index your project for searching in a public archive. The archive name
is STEMCarXiv. Adding your project to the STEMCarXiv index is easy. Open your project in the
workspace. Ensure that you are signed in to GitHub to enable the cloud menu. Select the Publish
Project to STEMCarXiv option under the cloud menu. Your project will be indexed based upon meta
data such as its description and keywords.

To search for your program in the STEMCarXiv, use the search box on the Home Page.

Embedding the Project in a Web Page

Your project may be embedded in a web page. Use the Embedding Builder menu item under the Share
Menu in the workspace view to build the HTML Embed String.

Running the Project in STEMCviewer

STEMCstudio has an execute-only companion application called STEMCviewer. This can run your
application without loading the design-time parts of STEMCstudio. Simply change the URL in your
browser to stemcviewer.com/gists/your-gist-identifier.

o For this to work you must have executed your program and uploaded it to GitHub.
The explaination can be found in the How it Works section of this book.

10

1.2. How It Works

Understanding how STEMCstudio works will enable you to consume external libraries, author
external libraries for consumption by STEMCstudio, optimize performance, and resolve issues that
inevitably arise.

Minimal Application Example

We’ll use, as an example, an application that results from using the minimal template to create a
new project. If you have access to your computer, create such a project and follow along as we walk
through it. Make changes to check your understanding of what is going on.

Every web application has, at its core, an HTML file that is loaded by the browser. The source code
for the HTML file, index.html, in this example is rather unremarkable and doesn’t look like it will do
anything dynamic.

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<base href="/">
<title></title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />
<link rel="stylesheet" href="style.css">
</head>

1
2
3
4
5
6
/
8
9
0

<body>
<h1 id="title'>Hello, World!</h1>
</body>

</html>

About all we can surmise from this file is that it is going to bring in the style.css from the project.

Let’s take a look at the index.ts file.

window.onunload = function() {

1
2
3
4
5}
6
/
8

export { }

11

This certainly looks like the code that produces the behavior of the application. But how does this
file get loaded?

There’s an underlying rule in STEMCstudio that a file called foo.html will try to load a file called
foo.js. If you know anything about TypeScript it is that browsers execute JavaScript and there exists
a transpiler that can convert a TypeScript foo.ts to JavaScript foo.js. Every time you make a change
to your TypeScript files, STEMCstudio will be transpiling them to JavaScript in the background.

So now we need to know how all of this gets loaded into the browser. STEMCstudio is a little
different from other live coding environments in that all the processing is taking place in the
browser. While code may be loaded from elsewhere on the internet such as CDNs, there is no code
execution elsewhere. This is by design. If all the processing takes place in the browser then we
avoid the problems of scaling with the number of users which would otherwise require us to spin
up costly virtual machines in the cloud.

You may also know that web development often requires you to run a local web server because the
browser isn’t allowed to load resources using the file protocol. So how does STEMCstudio do it? The
solution is that STEMCstudio converts all JavaScript files to an industry standard module format
called system and then bundles all the resources it needs, including few extra bootstrapping scripts,
into a single string that the browser can load. It loads the bundled code into an iframe HTML
element. This is all happening in memory so it’s not obvious how to see directly what is going on.
However, there are two things we can do to peek behind the curtain!

One approach is to open the developer console in your browser and inspect the elements. You
should be able to find something like this:

>

<iframe id="...
#tdocument

<html lang="en">...</html>
</iframe>

Another approach is to know that STEMCstudio creates a cache of this bundled content and stores it
in a hidden file in your project called generated.index.html. So if you save your project to a GitHub
Gist (after it has been launched) then you can inspect this file in GitHub. You can also view it in
STEMCstudio by checking the Show Generated Files option under the Project Settings menu. Here’s
what it looks like in this example:

1 <IDOCTYPE html>
2 <html lang="en">
3
4 <head>
<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta http-equiv="X-UA-Compatible" content="1ie=edge">

<base href="/">

<title></title>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css">

12

<style>
body {
background: #ffffff;
font-family: sans-serif;
margin: 8px;
}
</style>
<script src="/assets/js/stemcstudio-systemjs@1.0.0/system.js"></script>
</head>

<body>
<script>
System.config({
"warnings": false,
"map": {}
});
</script>
<h1 id="title">Hello, World!</h1>

<script>
System.register("./index.js", [], function (exports_1, context_1) {
"use strict";
var __moduleName = context_1 && context_1.id;
return {
setters: [],
execute: function () {
window.onunload = function () {

+

44 </script>

45 <script>

46 System.default]SExtensions = true

47 System.import('./index.js"').catch(function(e) { console.error(e) })
48 </script>

49 </body>

50

51 </html>

The first thing to notice is that STEMCstudio has added a script to the head element that loads a
JavaScript file called system.js. The system.js file creates a global object called System which is
known as the module loader.

The second thing to notice is that the index.ts file has been transpiled and wrapped in a
System.register function call. This makes the transpiled contents of index.ts known to the System
module loader.

Further down you will see a System. import function call. This invocation executes the module that is
referred to by name.

And that’s the essence of how it works in the most simple case. More complicated multi JavaScript
file examples are handled automatically.

Cascading Style Sheets

Notice that the contents of the project style.css file have been inlined as a style tag in
generated.index.html at exactly the point in index.html where there was a link tag.

1.3. Writing and Calling Internal Modules

In STEMCstudio, modules are files in your project that export JavaScript resources such as classes,
functions and variables, and TypeScript-specific resources such as types and interfaces.

Modules provide a way to organize your code into separate concerns while controlling what you
expose to other modules. This is important for ensuring the maintainability of your code as it grows
in complexity.

STEMCstudio modules follow the ECMAScript ES6 modules specification exactly, so I won’t repeat
the specification or the many good tutorials on the web. The only thing that you do need to know is
how STEMCstudio handles module names and a small thing to be aware of concerning the
defaulting of JavaScript extensons.

Module Names

In STEMCstudio you will be writing your code as TypeScript and your files will have the .ts
extension. But the browser runtime uses JavaScript files, so we need to known how a TypeScript file
that contains the source code for a module is named as a JavaScript module.

In STEMCstudio, a file called foo.ts that is the source for a module becomes a JavaScript file
with the module name ./foo.js.

o Incidentally, any file that uses the export keyword is treated as a module.

Suppose that you have a file called foo.ts that exports a function:

foo.ts

1 export function greeting(: string): string {

2 return ‘Hello, ${ e
3}

To import the function from the file foo.ts you would use the import specification syntax:

14

1 import { } from "./foo.js"

If you press the keys Ctri+Spacebar while the cursor is within the curly braces of
O your import specification, STEMCstudio will provide a pick list of available
et remaining imports.

Defaulting of JavaScript Extensions

a If you do not provide the JavaScript extension for the internal module name, it
MAY work, but is not guaranteed to do so in future.

For example, suppose you import using the syntax:

import { greeting } from "./foo"

The legacy behavior of STEMCstudio is to default a JavaScript extension if one is not provided. You
will not get an error from the STEMCstudio IDE at design time.

1.4. Using NPM Packages (a.k.a. External Modules or
Libraries)

The ability to consume external modules in the form of NPM packages is one of the more powerful
features of STEMCstudio. An external library is JavaScript code that exists outside of your
STEMCstudio project and yet can be loaded and called from your STEMCstudio project. External
libraries often provide coarse-grained functionality such as diagramming or plotting. External
libraries are an effective way to reuse functionality, dramatically improving your productivity.
Additionally, STEMCstudio can consume external libraries without the need to for server-side
computing resources. This allows applications to be launched with minimum time to become
usable, and ensures scaling to large numbers of users. As with any flexible system, there is an
attendant increase in complexity of understanding and/or effort of implementation. The goal of this
section is to enable you to consume external libraries reliably and efficiently. The process for
consuming a package is systematic and therefore quite simple, though in some cases slightly
laborious.

Our approach for reaching the goal of consuming a library is as follows:

* Understand the general requirements for STEMCstudio interoperability.

* Know how to research the suitability of an external library.

* Be able to choose the correct implementation approach for a given library.
* Include the library as a dependency in a STEMCstudio project.

This approach uses standard software engineering techniques and the result is reliable and
performant. In the following sections we discuss the parts of this approach in detail.

Library Requirements for Interoperability with STEMCstudio

STEMCstudio is open to use any external library provided that library meets some particular
requirements. These requirements are mostly industry standards, but some additional
requirements are specific to STEMCstudio. When you author your own library, it takes little extra
effort to ensure that your library works seamlessly and efficiently with STEMCstudio. However,
with third party libraries, and when these requirements are not met, it is always possible to create
wrapper libraries that expose the required functionality suitable for consumption by STEMCstudio.

The requirements on a library support the design-time and runtime usage of the library. Let’s look
at each of these.

Designtime Requirements

Designtime refers to the editing process where we would like STEMCstudio to assist us with the
correct usage of the library.

STEMCstudio is able to offer editor support for an external library (package) when the TypeScript
type definitions (*.d.ts" files) for the package exist and are locatable. In the ideal case, the type
definitions are maintained by the package authors in order to keep them synchronized with the
implementation code, the definitions are co-located with the package on a CDN, and the
'‘package.json' file for the package provides the relative location of the type definitions. Increasingly,
as package authors use TypeScript as their source language, the type definitions are built along
with the source code, and the location is described in the 'package.json’ file. However, there are
examples of some popular libraries where type definitions are independently and manually
maintained in a separate package, and some cases where they do not exist at all. There are
solutions for all these cases that fill in the missing pieces and allow STEMCstudio to use almost any
package.

Runtime Requirements

Runtime refers to the execution of a program and may take place while STEMCstudio is working in
interactive mode or when STEMCviewer is presenting the working program.

STEMCstudio performs most efficiently when a library is in the 'system' module format. The
'system' module format is used by STEMCstudio because it allows module loading to be performed
entirely in the browser. While the 'system' module format is an industry standard (and an output of
the TypeScript compiler), popular libraries that directly implement this module format are rare.
However, if a package does not implement the 'system' format you are not always required to
implement a wrapper to perform the conversion. For eample, a well known module format that can
be consumed directly, and almost as efficiently, by STEMCstudio is the Universal Module Definition
(UMD). The operation with UMD is possible because the conversion to 'system' format, which
happens at runtime, is relatively efficient. The UMD format, while common, is an unofficial legacy
format. The industry is evolving towards use of the EcmaScript module format (ESM). The ESM
format can also be transpiled at runtime to the 'system' format but at present this requires the use
of the TypeScript transpiler and a hefty (approx 10MB) download. For this reason, it is preferable to
convert ESM to system format by wrapping the original library. Whatever the case, there are
solutions to make your intended third-party library available to STEMCstudio, and we will cover
them in this document.

16

o Chapter 7 provides concrete help and best practices for authoring a JavaScript
library optimized for STEMCstudio.

Researching a Package for use in STEMCstudio

The first step to incorporate an external library is finding out where it is deployed and how the
various library artifacts are stored in that deployment. We’ll use the term Content Delivery
Network (CDN) for a server that stores library artifacts and makes them available over the web
using a URL.

The de-facto standard for making a JavaScript library available for widespread consumption is for
the author to publish it to npm, the Node Package Manager. Don’t be misled by the name, many
packages are defined in npm even if there is no intention of using the library in Node.]JS.

If the library has not been published to npm, you will need to contact the library author to get details
about the library for consuming it. In this case your solution will likely include downloading the
library and wrapping it in your own package that you publish to npm.

We’ll assume that the library that you intend to use has been published to npm, and that you know
the package name.

The information that we need about a library includes its name, available versions, available
JavaScript module formats, the URL paths to the various JavaScript implementations and the URL
for the TypeScript definitions.

Inspecting a Package using online tools

There are two online websites that may be used to inspect an npm package. One is the npm repository
website itself, https://www.npmjs.com. Another is the popular ‘jsdelivr' CDN,
https://www.jsdelivr.com website. Both of these websites allow you to search for a package, inspect
the available versions, and even browse the file structure and file contents of the available
resources.

We’ll use the npm repository website here because it is the point of contact for the library author, but
you should also visit the jsdelivr website because you will need a CDN, and the URLs for retrieving
code are CDN specific.

An alternative to the jsdelivr CDN is https://unpkg.com. This also contains packages
that are published to 'npm'. However, I have found 'jsdelivr.com' to be more

o reliable than 'unpkg.com'. jsdelivr uses an extensive network of servers making it
suitable for production use, whereas unpkg has far less hardware and is more
suitable for prototyping.

Navigating to https://www.npmjs.com in a web browser will bring you to the npm search page. Enter
the desired package name, or other known descriptive details, to find the package. The author may
have provided the information you require in human-readable text on the package home page.
Another way you can find the information is to inspect the contents of the package.json file that
accompanies every library that is published to npm.

17

https://www.npmjs.com
https://www.jsdelivr.com
https://unpkg.com
https://www.npmjs.com

Modern and Legacy package.json properties.

With the advent of ESM, the specification for how the 'package.json' file should describe the
location of file resources has become more sophisticated and slightly fragmented. One example of
fragemtation is that there exists a "modern" specification based upon the 'exports' JSON property
and a "legacy" specification that uses a number of JSON properties. Some packages will use both
approaches and consider the "legacy" approach to be a fallback mechanism. Another fragmentation
example is that runtime behavior is specified in the Node.J]S specification, but this specification
makes no mention of how designtime support is provided and we must resort to finding a standard
that defines the location of TypeScript type definitions. Finally, module formats beyond 'ESM' are
not covered for the 'exports' property and so there are no guidelines for the 'system' module
format. The resolution of this fragmentation is that different interests have supplied their own
specifications. Fortunately, the core exports specification is quite flexible and there is plenty of
room for the different interests to coexist.

This document will not attempt to reproduce the official specification, which is
located here ‘https://nodejs.org/api/packages.html#package-entry-points’. The

o TypeScript authors offer some guidelines at https://www.typescriptlang.org/docs/
handbook/declaration-files/publishing.html, but this only appears to cover the
"legacy" case.

Ideal package.json file for consumption by STEMCstudio

Before looking at the various ways to prepare a library for consumption by STEMCstudio it will be
helpful to consider the ideal case of a package specifically engineered to work in STEMCstudio.

Consider the following fragment of a package. json file distributed with a package that was custom
built to be used in STEMCstudio:

"exports": {
II-": {
"types": "./dist/index.d.ts",
"import": "./dist/esm/index.js",

"require": "./dist/commonjs/index.js",
"system": "./dist/system/index.min.js",
"default": "./dist/esm/index.js"

Take a look at the exports property first and the descendant property default. The corresponding
property value is "./dist/esm/index.js". The value is the location of the ESM module implementation
relative to the package.json file. This is in accordance with the Node.]S specification.

I won’t fully explain the properties that can exist underneath the exports property,
nor how they work. You should refer to the Node.]S documentation. For our
o purpose it is sufficient to know that the properties under export can describe paths
that provide a means to filter the available resources and that the period in this

18

https://www.typescriptlang.org/docs/handbook/declaration-files/publishing.html
https://www.typescriptlang.org/docs/handbook/declaration-files/publishing.html

case refers to the top-level module.

Now look at the types property that is a sibling to the default property. The value of this property is
"./dist/index.d.ts" and defines the relative location of the TypeScript type definitions. The types
property is important to STEMCstudio because it enables design time editing support.

The remaining system sibling property is a STEMCstudio standard. It describes the entry point for
the runtime in system module format.

Finally, the module and types properties that are sibling to exports property are the "legacy"
mechanism for locating resources. STEMCstudio will only use these if it cannot find the exports

property.

Consuming an Ideal package in STEMCstudio

Now that you understand what constitutes an ideal package for STEMCstudio, we are ready to
configure STEMCstudio to consume the package.

For this example, we are going to use the package @geometryzen/my-1ib, which is the library example
described in the appendix.

The appendix describes how to consume this library.

When the third-party package is less than Ideal for STEMCstudio

If a third-party package does not support the system format it may still be possible to efficiently
consume the library if a UMD format exists. This is done by placing an override in your project
system.config.json file. The following example shows the overrides for consuming the react and
react-dom packages.

studio.config.json

"overrides": [
{
"name": "csstype",
"version": "3.1.2",
"system": "https://cdn.jsdelivr.net/npm/csstype@3.1.2/package.json",
"types": "https://cdn.jsdelivr.net/npm/csstype@3.1.2/package.json"

"name": "prop-types",
"version": "15.8.1",
"system": "https://cdn.jsdelivr.net/npm/prop-types@15.8.1/umd/prop-

1
2
3
4
5
b
7
8
9
0
1

1
1

types.js",

—_
No

"types": "https://cdn.jsdelivr.net/npm/@types/prop-
types@15.7.5/package.json"
¥
{
"name": "react",
"version": "18.2.0",

19

17 "system":
"https://cdn.jsdelivr.net/npm/react@18.2.0/umd/react.development.js",

18 "types":
"https://cdn.jsdelivr.net/npm/@types/react@18.0.28/package.json"

19 bs

20 {

21 "name": "react-dom",

22 "version": "18.2.0",

23 "system": "https://cdn.jsdelivr.net/npm/react-dom@18.2.0/umd/react-dom-
development.js",

24 "types": "https://cdn.jsdelivr.net/npm/@types/react-
dom@18.0.10/package.json"

25 }

26 1,

27 "references": {},

Ignore the csstype and prop-types overrides for now and focus on the react and/or react-dom
override. We can see that there is an override for the runtime behavior by having the "system"
property reference a UMD module. We’re also getting the TypeScript type definitions through the
@types organization.

How did we know that these overrides are needed? This can only be done by inspecting the
distributed artifacts. Some Software Engineering detective work is needed to discover the
alternatives. Once plausible alternatives have been found, the required override can be created and
tested.

Consuming EcmaScript Modules in STEMCstudio

STEMCstudio simulates the browser ES module loader by transpiling ESM code into the System
format. In the Live Coding Editor it does this on-the-fly for TypeScript code in your project.
STEMCstudio can also transpile external libraries. However, there is a catch. For external libraries
in ESM format, the System loader needs to transpile the code before it can be executed. This in turn
requires loading the typescript.js file as an ordinary script in your HTML file:

<script src="https://stemecstudio.com/vendor/typescript@5.0.0/typescript.js'></script>

You can try the application at the following URL:
https://www.stemcviewer.com/gists/fee3eb03cf64db9fd3ee963875a656ca
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/fee3eb03cf64db9fd3ee963875a656ca

But typescript.js is a large (approx 10MB) file so this can be slow and can seriously affect the load
time of your application. Using the async or defer attributes to control the load either does not help
with performance or does not solve the problem. Additionally, transpiling the external module on-
the-fly may not work if the the library is not bundled into a single file.

20

https://www.stemcviewer.com/gists/fee3eb03cf64db9fd3ee963875a656ca
https://www.stemcstudio.com/gists/fee3eb03cf64db9fd3ee963875a656ca

An alternative approach, described in the Appendix, is to convert ESM-only libraries into System
format up-front. This is highly recommended for production applications. It can also solve the
problem of bundling external module files.

For prototyping, it may be acceptable to convert the ESM module at execution time. To use an
external library in the esm module format you will need to make TypeScript available to the System
loader using the script tag above.

Best Practices for Maintainability

The ideal way to consume a library in STEMCstudio is for the library to meet all the requirements
for avoiding overrides:
» The library has a bundled system module format.

e The system module format can be located using the "exports" property in the library
package.json file.

* The library has TypeScript type definitions.
* The index.d.ts file can be located using the "exports" property in the library package.json file.
If these conditions are not met then it should be possible to create a package, owned and versioned

by your own organization, that exposes the third-party library in the ideal form. See the appendix
for more details.

1.5. Summary

In this chapter we have made a start by creating a project in STEMCstudio. We have seen how it
works behind the scenes, how to scale up to larger applications by using internal modules and
external libraries, and how to save and find your work.

21

Chapter 2. Learning Tools Interoperability

In the chapter we will understand the LTI 1.3 standard in relation to Learning Management
Systems and how STEMCstudio can provide dynamic content for an LMS. Additionally, we will be
looking at the programming API for interacting with the LMS as well as the process for registering
STEMCstudio with the LMS and the process for authoring course activities.

2.1. What is Learning Tools Interoperability?

Learning Tools Interoperability (LTI) is a standard that defines how a web application such as a
Learning Management System can host and interact with other web applications that provide
learning activities and content for courses.

https:.//www.1edtech.org/standards/Iti

Terminology

In the LTI model, the hosting web application is generically known as a platform and the hosted
web application is known as a tool. The platform and tool communicate through secure web
network interactions. The initial registration of a tool with a platform results in each party
exchanging public keys for secure communication.

Background

The latest version of LTI is currently version 1.3 and is managed by the IMS Global consortium.

The version 1.3 has caused some confusion because it is not backwardly
compatible with the LTI 1.0 specification, and the 2.0 specification was abandoned

o being replaced by 1.3; a case of mixing marketing names with semantic version
numbers! Other than the initial confusion, this should not pose any technical
problems.

Capabilities

The 1.3 version of the standard mainly defines how a platform can link to the content provided by a
tool, and how a tool can interact with the Gradebook of the platform to submit scores, retrieve
results, and add new Gradebook items. A separate specification called LTI Advantage defines how
the registration process can occur in a way that hides all the complexity of exhanging security keys
and othe meta information that must be exchanged between the platform and _tool.

Benefits

LTI is a dramatic improvement over the traditional plugin model that requires a plugin author to
provide code that is installed on the host LMS. The following table offers an at-a-glance feature and
benefit comparision of the two different architectures.

22

https://www.1edtech.org/standards/lti

Feature STEMCstudio+LTI traditional plugin Benefit
Modules ES6 No Scalability
Libraries Open Closed Extensibility
Importing Modular Global Variables Safety
Versioning Yes No Reliability
Smart IDE Yes No Productivity

2.2. Dynamic Registration

Dynamic Registration is an automated process for establishing secure communication parameters
for the tool (STEMCstudio or STEMCviewer in this case) and the platform (e.g. Moodle, Canvas,
Blackboard, Sakai). Once registration is complete, the tool can be launched securely using the
identity of the user logged into the LMS.

The URL to use for dynamically registering STEMCstudio is https://stemcstudio.com/tool.

You will use STEMCstudio for the creation of learning resources. STEMCstudio
provides both the design-time environment for resource creation as well as the
run-time environment for executing and previewing your creations. However, if

o all you want to do is to execute your creations either standalone or in a Learning
Management System then it is more efficient to execute them using STEMCviewer.
Not only will STEMCview load faster, but it will also prevent access to the source
code for your project.

The URL to use for dynamically registering STEMCviewer is https://stemcviewer.com/tool.

The following image depicts the registration using the Moodle LMS.

https://stemcstudio.com/tool | Add LTI Advantage

Figure 8. Registering STEMCstudio in Moodle using LTI Advantage

The registration process currently requires no interaction and results in a badge for STEMCstudio
in the Pending state.

23

https://stemcstudio.com/tool
https://stemcviewer.com/tool

=40
STEMCstudio

Expressing ldeas through
Computational Modeling™

Figure 9. STEMCstudio tool with Pending status in Moodle

The tool must be activated before it can be used.

{ Active] 8o

STEMCstudio

Expressing ldeas through
Computational Modeling™

This tool has not yet been used

Figure 10. STEMCstudio tool with Active status in Moodle

2.3. Deep Linking

Deep Linking allows Activities and Resources defined in the tool to be linked to the LMS with
minimal manual configuration. The user interface of the tool itself is used to configure the link. In
the case of STEMCstudio, this means selecting the project (Gist) and setting the parameters that
determine how the workspace appears.

Creating a new Activity in Moodle requires the following steps:

1. Select a Course.

2. Add an activity or resource.

24

3. Select External Tool as the activity type.

4. Choose STEMCstudio from the list of preconfigured tools (STEMCviewer can also be chosen and
is a simpler process)

5. Press the Select content button.

This will navigate you to the STEMCstudio Home Page. From here you can select your STEMCstudio
project in two ways.

1. Log in to GitHub in STEMCstudio and download your project.

2. Find the project in the STEMCarXiv (assuming you have published it).

If the workspace opens with your project, you will need to navigate back to the STEMCstudio Home
Page in order to see your project with a Link button.

% LTI Learning Activity Template
David Geo Holmes

Sep 6, 2022

Figure 11. STEMCstudio Home Page with Project available for Deep Linking

Press the Link button to begin the Deep Linking process.
STEMCstudio will now present you with a dialog that will enable you to configure your resource.

The top part of the dialog offers configuration parameters.

25

Graded D Coding

Editor File

index.ts X
Program File

index.html X

Documentation File

README.md X

D Explorer D Code Program D Documentation
D Explorer Toggle D Code Toggle D Program Toggle D Documentation Toggle
D Branding D Project Menu D Cloud Menu D Collaboration D Description

Cancel m

Figure 12. STEMCstudio Deep Linking Resource Configuration

The bottom part of the dialog shows you what will be displayed.

Cancel m

What is the answer to life, the universe, and everything?!

| | | submit |

Figure 13. STEMCstudio Deep Linking WYSIWYG (What You See Is What You Get)

Use the Graded and Coding checkboxes to define the coarse behavior. Use the remaining options to
fine tune the activity. You can think of the Graded and Coding options as dividing the space of
activity into four kinds:

Graded Coding Kind of Activity
No No Demonstration
No Yes Student Coding Exploration
Yes No Quiz or Question
Yes Yes Graded Coding Exercise
o There is no intrinsic meaning to the Graded and Coding options; they merely cause

26

sensible choices to be made for the options below them.

Once you are satisfied with your choice of options, press the OK button.

This will return you to the LMS where you can Save the activity.

2.4. Programming API

STEMCstudio provides an Application Programming Interface (API) that allows you to access the
following LTI services:

Assignments and Grades Service, and Names and Roles Service.

Interaction with these services from your STEMCstudio application happens through the
'stemcstudio-tunnel' package. This package provides abstractions that represent the Gradebook, the
User, and the Cohort defined by the users' registration in a course.

This diagram illustrates the intermediaries involved in accessing the Gradebook from Your Code:

LMS Web App STEMCstudio LMS
Server Server

STEMCstudio Web App

stemcstudio-tunnel |

Your Code

gradebook

HTMLIFrameElement

JavaScript Library

generated.index.html

Figure 14. Your Code communicating with LMS Server through the stemcstudio-tunnel library.

The communication between Your Code and the STEMCstudio App is performed -
behind the scenes - as message passing because your application is running in an
HTMLIFrameElement. Additionally, the communication between the STEMCstudio
o App and both servers happens using HTTPS web service calls. For both these
reasons, the communication between Your Code and the gradebook must be
asynchronous. This will require some familiarity with either the JavaScript

27

Promise API or the async/await syntax.

To get started we must make stemcstudio-tunnel available as a dependency. Having done that, the
following import makes the LTI services available as JavaScript objects:

1 import { } from 'stemcstudio-tunnel'

The following code examples are taken from the STEMCstudio project
https://www.stemcstudio.com/gists/96ea9435cb61fa7ba342bb226fh99623. When

o you run this project in STEMCstudio outside of the LMS, STEMCstudio will simulate
some responses to aid in application development. When you deploy your
application to your LMS it will use the real LTI services.

Be sure to be signed on with the correct roles when testing your LTI activity. If
A your admin or instructor is not enrolled in the course you are developing then
requests such as submitting scores will fail.

Get the Gradebook Items (Columns) for the current Activity.

You’ll need to do this if you want to submit scores to the gradebook. The zeroth element of the
Item[] array returned by gradebook.getItems() contains the gradebook column for the current
activity and has an identifier property called id.

The zeroth element of the Item[] array is the default gradebook column. We will
o see later that it is possible to add additional gradebook columns for the current
activity.

async function getItems() {
try {

const items: [1 = await .getItems()

.log('GRADEBOOK ITEMS")

.stringify(, null, 2))
.alert({ title: "Get Items", message: .stringify(, null, 2) })
} catch (e) {
warn(' ${e}")

Submit Score for the current Activity.

Submitting a score for the current activity requires that you provide the identifier of the gradebook
column.

1 async function submitScore() {

28

https://www.stemcstudio.com/gists/96ea9435cb61fa7ba342bb226fb99623

try {
const comment = await user.prompt({ title: 'Submit Score', message: 'Please
add a comment.', text: 'This is outstanding work!', label: 'comment', hint: "" })
if (gradebookItems.length > @) {
const score: Score = {
scoreGiven: Math.random(),
scoreMaximum: 1,
activityProgress: 'Completed’,
gradingProgress: 'FullyGraded’,
comment

{
await gradebook.submitScore(gradebookItems[@].id, score)
console.log('SCORE SUBMIT OK")
console.log("' !
} catch (e) {
console.warn(${e}")
}

+
} catch (e) {

console.warn(e)

Get Results for the current Activity

Getting the results for the current activity and student is

1 async function getResults() {

2 if (gradebookItems.length > 0) {

3 const results = await gradebook.getResults(gradebookItems[@].1id)

4 console.log('GRADEBOOK RESULTS')

5 console.log(' '

6 console.log(JSON.stringify(results, null, 2))

7 user.alert({ title: "Get Results", message: JSON.stringify(results, null, 2)

Creating a new Gradebook Item (Column) for the current Activity.

Every activity has, by default, exactly one gradebook item when it is created. However, the LTI
Advantage API allows you to create new columns on-the-fly for the current activity. This is how it is
done:

1 async function createItem() {
2 const itemdef: Omit<Item, 'id'> = {
3 scoreMaximum: 23.5,

label: 'My New Item',
tag: 'My Tagge',

resourcelLinkId: 'RLID',
1tiLlinkId: '"LLIID',
resourceld: "RID2"

{

const item = await gradebook.createItem(itemdef)
console.log('CREATED ITEM')
console.log('
console.log(JSON.stringify(item, null, 2))
} catch (e) {
console.warn(‘${e}")
user.alert({ title: "Create Item", message: ‘${e}' })

Get Membership for the current Activity Context.

You probably won’t need to do this. The Names and Roles Service allows tools to synchronize with
the course membership in the LMS.

async function getMembers() {

try {
const response = await cohort.getMembers()
console.log('COHORT MEMBERS")

console.log(JSON.stringify(response, null, 2))
for (const member of response.members) {

1
2
3
4
5 console.log("'
§)
7
8 console.log(' ${member.name} ${ISON.stringify(member.roles)}")

9 }

10 } catch (e) {

11 console.warn(' ${e}")
12 }

(B

2.5. Summary

LTI 1.3, a.k.a. LTI Advantage, is a technical standard that describes how Learning Management
Systems can securely link to external Content Providers to provide content for courses.

STEMCstudio understands the LTI 1.3 protocol; STEMCstudio applications can be launched from an
LMS and can interact with the Gradebook.

Chapter 3. Useful STEM Libraries

This chapter will explore some useful libraries that can make you more productive in producing
your application. The purpose of this chapter is not to provide an in-depth tutorial of each library
but rather to introduce and show the concept behind various libraries that may be useful in
constructing a STEM Learning Activity.

3.1. 2D Scalable Vector Graphics with g20
y

Figure 15. g20 being used to render a Block on an inclined Ramp

Introduction

g20 provides a modern JavaScript (TypeScript) suite of ESM modules for rendering 2D graphics
using Scalable Vector Graphics (SVG) in the browser. This suite of modules was expressly designed
for educational purposes and use within STEMCstudio.

The home page is at https://github.com/geometryzen/g20mono.
You can view the application at the following URL:
https://www.stemcviewer.com/gists/38aa01dfe4eca3a22d3f972d17c17df2

The code for this example can be found at the following URL:

31

https://github.com/geometryzen/g20mono
https://www.stemcviewer.com/gists/38aa01dfe4eca3a22d3f972d17c17df2

https://www.stemcstudio.com/gists/38aa01dfedeca3a22d3f972d17c17df2

The official npm page for the core package, @920/core, is https://www.npmjs.com/package/@g20/
core. This page informs you of the latest runtime version and provides a link to the GitHub
repository. All applications using @920/core will also need the shared reactive signals package,
@920/reactive. Other packages described on the GitHub Monorepo Home Page are optional. When
using the packages in your project, ensure that the version numbers are all the same; the packages
are all published together and with the same version number to guarantee that they are
compatible.

Configuration

Configuring your STEMCstudio project to use @g20 involves creating a dependency on '@g20/core’,
'@g20/reactive’, and '@g20/svg' in your package.json file. There is no need to specify any overrides
(which would be in studio.config.json). In the following example, there is also a dependency of
920/gr1id so that we can create a Grid.

package.json

~

"description”: "@g20 Block on Ramp",
"dependencies": {
"@g20/core": "1.0.0-alpha.47",
"@g20/grid": "1.0.0-alpha.47",
"@g20/svg": "1.0.0-alpha.47"

I
"name": "g20-block-on-ramp",
"version": "1.0.0",
"author": "David Geo Holmes",
"keywords": [

"©g20",

"STEMCstudio",

"2D",

"Graphics"”,

"Geometric",

"Algebra"”,

"Block",

"Ramp"

0O ~N o ol B W N -

1,

"private": true
22 }

As a result of this configuration, the generated system.config.json and types.config.json files will look
like:

system.config.json

32

https://www.stemcstudio.com/gists/38aa01dfe4eca3a22d3f972d17c17df2
https://www.npmjs.com/package/@g20/core
https://www.npmjs.com/package/@g20/core

alpha.47/package.json",

"@g20/grid": "https://cdn.jsdelivr.net/npm/@qg20/gride1.0.0-
alpha.47/package.json",

"@g20/svg": "https://cdn.jsdelivr.net/npm/@g20/svg@1.0.0-
alpha.47/package.json",

"@920/reactive": "https://cdn.jsdelivr.net/npm/@g20/reactive@1.0.0-
alpha.47/package.json"

Notice that the runtime modules are found automatically from each package.json file.
Similarly, the TypeScript type definitions are found automatically from each package.json file:

types.config.json

"@g20/core": "https://cdn.jsdelivr.net/npm/@qg20/core@1.0.0-
alpha.47/package.json",

"@g20/grid": "https://cdn.jsdelivr.net/npm/@qg20/gride1.0.0-
alpha.47/package.json",

"@g20/svg": "https://cdn.jsdelivr.net/npm/@g20/svge1.0.0-
alpha.47/package.json",

"@g20/reactive": "https://cdn.jsdelivr.net/npm/@g20/reactive@1.0.0-
alpha.47/package.json"

}
8}

Usage

In this example, the index.html file provides a container for the rendered drawing (which will be an
svg element) by providing a div element with an identifier so that it may be found from JavaScript
code. The class attribute has been set to board so that it may be styled in the style.css file. Notice
that the size of the rendering has been set in this file to 500 pixels by 500 pixels.

index.html

<!DOCTYPE html>
<html>

<head>

<base href="'/"'>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />

<link rel="stylesheet' href="style.css" />
</head>

<body>
<div class="board" style="width:502px; height:502px">

12 <div id="my-board' style='width:500px; height:500px'></div>
13 </div>

14 </body>

15

16 </html>

In the index.ts file, the initBoard function call constructs the svg element that holds the drawing.
The boundingBox attribute specifies the user coordinate system. Various shapes are then constructed
and added to the board. The shapes in the core (@920/core) package may either be created explicitly
and then added to the board, or the convenience methods on the Board can be used to combine
these two steps.

index.ts
import { Arrow, G20, Polygon, Rectangle } from '@g20/core’;
import { Axes, Grid } from '@g20/grid’;
import { initBoard } from '@q20/svg’;

const size = 1;

const board = initBoard("my-board", {
boundingBox: { left: -size, top: size, right: size, bottom: -size }

;i

board.defaults.text.fontFamily = "Lato";
board.defaults.text.fontSize = 20;

const gridXY = new Grid(board);
board.add(gridXY);

const axesXY = new Axes(board);
board.add(axesXY);

axesXY.opacity = 0.3;
axesXY.xAxis.strokeColor = 'black';
axesXY.xAxis.strokeWidth = 2 / board.sx;
axesXY.yAxis.strokeColor = 'black';
axesXY.yAxis.strokeWidth = 2 / board.sx;

const axesSN = new Axes(board, {});
board.add(axesSN);
axesSN.xAxis.strokeColor = 'black';
axesSN.xAxis.strokeWidth = 2 / board.sx;
axesSN.yAxis.strokeColor = 'black';
axesSN.yAxis.strokeWidth = 2 / board.sx;
axesSN.opacity = 0.3;

axesSN.visibility = 'visible';

const A = board.point([0.0, 0.0], {
id: 'A",
visibility: 'visible',

37 text: "A",
38 anchor: "end",
39 baseline: "middle",
40 dx: -5,
41 hideIcon: true
42 });
43
44 const B = board.point([size * 8 / 5, 0.0], {
45 id: 'B',
46 visibility: 'visible',
47 text: "B",
48 anchor: "start",
49 baseline: "middle",
50 dx: 5,
51 hideIcon: true
o)
const C = board.point([size * 8 / 5, size * 4 / 5], {
54 id: 'C',
55 visibility: 'visible',
56 text: "C",
57 anchor: "start",
58 baseline: "middle",
59 dx: 5,
60 dy: -10,
61 hideIcon: true
1
63
64 const AB = B.X - A.X;
65 const AC = C.X - A.X;
66 const S = AC.normalize();
67 const N = S * G20.1;
68
69 const ramp = new Polygon(board, [A.X, B.X, C.X], {
70 id: 'ramp',
Al fillColor: 'rgb(@, 191, 168)',
72 fillOpacity: 0.3,
73 strokeColor: 'rgb(@, 191, 168)',
74 strokeWidth: 0.016 * size
75 });
76 board.add(ramp);
77 ramp.center();
78 ramp.visibility = 'visible';
79
80 const block = new Rectangle(board, {
81 id: 'box',
82 width: size * 2 / 5,
83 height: size * 1/ 5,
84 fillColor: "#FFFFOQ",
85 fillOpacity: 0.3,
86 strokeColor: "#FFCC0O",
87 strokeOpacity: 0.6,

strokeWidth: 4 / board.sx
3
board.add(block);
block.R.rotorFromDirections(AB, AC);
block.X = A.X + AC * 0.75 + N * block.height / 2;

axesSN.R.rotorFromDirections(AB, AC);

axesSN.xLabel.content s';

axesSN.yLabel.content n';

const textD = board.text("Block", {
id: 'text-D',
anchor: 'middle’,
baseline: 'middle’,
opacity: 0.7,
position: block.X

)
textD.R.rotorFromDirections(AB, AC);

const textE = board.text("Ramp", {
id: "text-E',
anchor: 'middle’,
baseline: 'hanging',
opacity: 0.7,
position: ramp.X
3
textE.R.rotorFromDirections(AB, AC);

const Fg = board.arrow(- G20.ey * 2.0 * size / 5, {
position: block.X,
strokeColor: 'black',
headlLength: 0.05 * size

};

Fg.strokeOpacity = 0.4;

Fg.strokeWidth = 3 / board.sx;

const Fn = new Arrow(board, N * 1.5 * size / 5, {
position: block.X,
headlLength: 0.05 * size,
strokeColor: 'black',
strokeWidth: 3 / board.sx
3
board.add(Fn);
Fn.strokeOpacity = 0.4;

const Fs = board.arrow(S * 1.2 * size / 5, {
position: block.X,
headlLength: 0.05 * size,
strokeColor: 'black',
strokeWidth: 3 / board.sx

139 1);

140 Fs.strokeOpacity = 0.4;

141

142 function animate(_timestamp: number) {
143

144

145 window.requestAnimationFrame(animate);
146 }

147

148 window.requestAnimationFrame(animate);
149

150 window.onunload = function() {

151 try {

152 board.dispose();

153 }

154 catch (e) {

155 console.warn(${e}");

156 }

157 };

You may want to provide some styling of your Board’s container element as has been done here:

style.css

background-color: #cccccec;
margin: 8px;

.board {

background-color: #ffffff;
border-style: solid;
border-width: 2px;
border-color: #0066ff;
border-radius: 10px;

Consult the official documentation for further details on how to use @g20.

3.2. 2D Diagramming with JsxGraph

37

Figure 16. JsxGraph being used to demonstrate a Euclidean theorem

JsxGraph is desribed as a JavaScript library for interactive geometry. It is known especially for 2D
rendering but can also render in 3D. The underlying rendering technology is pluggable but the
most common technology used is Scalable Vector Graphics (SVG). The programming API consists of
defining geometric elements, usually starting with points, and connecting them together to create
geometric constructions. JsxGraph is able to render diagrams as well as text. JsxGraph is also an
excellent utility for constructing specialized diagrams e.g. mechanics, electronics, and
electrodynamics.

38

20.58

] Gravity a0

(] Rope 85

__| Show Forces on Ball 80 119}
75
70
65

60

Figure 17. JsxGraph being used to render a Ball on a Spring Physics Simulation

Using JsxGraph in STEMCstudio

The starting point for using JsxGraph in STEMCstudio is to ensure that jsxgraph exists as a
dependency in your project package.json file. You can either add this dependency manually be

1]
directly editing the package.json file or by using the B+ (Add Dependency) button above the
explorer view.

~

"description”: "JSXGraph Template",
"dependencies": {
"jsxgraph": "1.10.1"
b
"name": "jsxgraph-template”,
"version": "1.0.0",
"keywords": [
"JSXGraph",
"template",
"STEMCstudio",
"Beginner"

1
2
3
4
5
6
7
8

1,
"private": true,
"author": "David Geo Holmes"

39

16

}

It is common to define a div HTML tag in your index.html file as a placeholder for the creation of
the Board.

O 0 N o Ul & W N =

_
S

<!DOCTYPE html>
<html lang='en'>

<head>
<meta charset="UTF-8">
<title>]SXGraph template</title>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<base href="/">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />
<link rel="stylesheet'
href="https://cdn.jsdelivr.net/npm/jsxgraph@1.10.1/distrib/jsxgraph.css" />
<link rel="stylesheet' href="style.css" />
</head>

<body>
<div id="my-board' class="jxgbox' style="width:500px; height:500px'></div>
</body>

</html>

The jxgbox class is defined in the jsxgraph.css file in the JsxGraph distribution.

The JsxGraph distribution provides a jsxgraph.css file with pre-defined Cascading
Stylesheet Styles. This is optional but a useful starting point. Include the file by
using a 1ink HTML tag as shown.

You are now ready to begin coding your JsxGraph construction. The following example
demonstrates the use of the programming API.

1
2
3
4
5
b
7
8

9
10
11
12

import { JSXGraph } from 'jsxgraph’

const board = JSXGraph.initBoard("my-board", {
axis: true,
boundingBox: [-5, 5, 5, -5],
showCopyright: true,
showFullscreen: true,
showNavigation: true,
showScreenshot: true

})

const A = board.create('point', [0, 0])

const board.create('point', [4, 0])
const board.create('point', [0, 4])

board.create('circle', [A, B])

const board.create('angle', [B, A, C], { radius: 3 })
const board.create('slider', [[-2, 11, [2, 1], [0, Math.PI * 0.5, 2 * Math.
PI1])

a.setAngle(function() {
return s.Value()

3]
board.update()

window.onunload = function() {
JSXGraph. freeBoard(board)
}

Maintaining the version of JsxGraph in your project.
Over time, you may wish to upgrade the version of JsxGraph that is being used by your project.

You should be aware that adding jsxgraph as a dependency to your package.json file caused an
override entry to be created in your studio.config.json file:

—~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"overrides": [

{

"name": "jsxgraph",

"version": "1.10.1",

"system":
"https://cdn.jsdelivr.net/npm/jsxgraph@1.10.1/distrib/jsxgraphcore.js",

"types": "https://cdn.jsdelivr.net/npm/jsxgraph@1.10.1/package.json"

1
2
3
4
5
b
7
8
9
0
1

+
1
15 "references": {},
16 "showGeneratedFiles": true
17 }

The override stipulates that the runtime implementation should come from the
@geometryzen/jsxgraph wrapper (which provides a system module format) while the type definitions
should come from the original jsxgraph package. Using the jsxgraph package, you are responsible
for maintaining both the package. json file dependency as well as the studio.config.json override.

JXG Global Variable or ES6 Module Syntax

You have a choice in how you consume the JsxGraph library. This is because the JsxGraph library is
bundled in a format called the Universal Module Definition (UMD). If you consume the library as a
global variable then the variable name is JXG and it lives in the window namespace. Your code will
look like this:

.initBoard("my-board", {

axis: true,

boundingBox: [-6, 6, 6, -6],
showCopyright: true,
showNavigation: true,
showScreenshot: true

.create("point", [1, 1])

.update()
window. = function() {
.freeBoard(
.log("Goodbye!")
16 }
7 To see the JavaScript resources that you can use from the JXG namespace, type a
- period after the JXG symbol.

board = JXG.psXGraph.initBoard("my-board", {
axis: tru addEvent
~ight autoDigits
Lol autoHighlight
bind
Board
board.create("poil hoards
board.update() capitalize
.onunload =

. log("Good f

Figure 18. STEMCstudio Context Assist

If you consume the library using ES6 Module Syntax then your code will look like this:

1 import { } from "jsxgraph"

42

const = .initBoard("my-board", {
axis: true,
boundingBox: [-6, 6, 6, -6],
showCopyright: true,
showNavigation: true,
showScreenshot: true

.create("point", [1, 1])
.update()

window. = function() {
16 .freeBoard()
17 .log("Goodbye!")
18 }

To see the JavaScript resources that you can import from the jsxgraph module,
(;) type a comma after the JSXGraph symbol inside the curly braces of the import
statement and press the Ctrl+Spacebar keys.

AngleOptions

board.create("poii Al

board.update()

.onunload =
JsXGraph.freeB
.log("t

Figure 19. STEMCstudio Import Help

The choice as to whether you use the global JXG variable or ES6 Module Syntax is most likely going
to be determined by your execution environment. For example, if you are using a legacy LMS
plugin architecture then most likely JsxGraph will be available as the global JXG variable.
Otherwise you should default to the more flexible ES6 Module Syntax and runtime architecture.

The overloaded Board.create method and pitfalls when using TypeScript

The create method of the Board class is overloaded to return different types according to the
elementType parameter. Additionally, the second parents parameter may allow more than one type,

43

and the optional third parameter usually has property names which are case-insensitive.

Frequently, a developer may report that the code runs correctly but the editor can’t help with the
semantic checking.

Let’s look at a concrete example:

:I‘j’ ﬁr ﬁn _ﬁ]r
1 -true,
gat i true,
enshot: true

P = board.c ("point", [1, 1], { withlabel: fals

P: JXG.GeometryElL CLor J netryElement
board. wpuaccy; - ryEtementl]

.onunload =

JsXGraph.fre
. Lo gl

Figure 20. JsxGraph Board.create overloaded issue
What is going on here?

We see that the developer intent is to create a JXG.Point instance, but the editor is confused and can
only establish the general return type of the create method. The problem is difficult to spot.

If we break up the JXG.Point construction into two lines then the cause becomes apparent:

JsxGraph.initBoard("my-board"

[-6,:6,:6,:-6],
true,
i true,
10t true

board.update()

.onunload =

Figure 21. JsxGraph Board.create debugging

The property name withlabel is incorrect and should be withLabel (according to the TypeScript type

44

definitions). The code runs correctly because the runtime allows case insensitivity in the property
names. But at design time, the difference is sufficient to throw off the matching that establishes the
return type. There is a trade-off going on here. If the typing of the create method is very lax then it
can be made to match based on the elementType parameter, but the definitions will not provide
useful information on the second and third parameters. If the typing of the create method is
exhaustive then it will not match when there are common mistakes.

I believe the pragmatic solution is to proceed by breaking the construction into multiple lines, as in
the previous example. In this case you will get more help for the third attributes parameter.

3.3. 3D Graphics with Eight

When we think of 3D Graphics, we are normally referring to a high performance processing
pipeline that takes advantage of the parallel processing of the Graphics Processor Unit (GPU). An
example of this is WebGL. The WebGL API is very low level and not very practical for most STEM
education needs where the desire is to use common geometric objects to render scenes. Higher
level APIs are available in JavaScript libraries that hide the implementation details of WebGL and
provide suitable abstractions for building 3D scenes.

While the three package (https:/www.npmjs.com/package/three) is well known and provides more
than adequate functionality for rendering 3D graphics, an alternative is available that is designed
to be more suitable for educational purposes. This package is called davinci-eight. The core ideas
behind this package are:

* Uniform representation of position and attitude using Geometric Algebra. This avoids the ad-
hoc approaches to rotations based on Euler angles and quaternions.

» Written in TypeScript with generated type definitions. The type definitions are guaranteed to be
accurate and the library code is easier to maintain.

* Designed for extension at all levels in the architecture. This allows the user to create more
sophisticated graphics and new objects by having clearly defined extension points.

While the davinci-eight package has different design objectives, the programming metaphor is
very similar to three.

Try It

Here is an example of some of the out-of-the-box components available.

45

https://www.npmjs.com/package/three

Figure 22. Graphics using the @geometryzen/eight WebGL Library

You can try the application at the following URL:
https://www.stemcviewer.com/gists/b58dd9a292ab3c34044a6231d7c00b4a
The code for this example can be found at the following URL:

https://www.stemcstudio.com/gists/b58dd9a292ab3c34044a6231d7c00b4a

Configuration
The package. json file in your project must include a dependency on davinci-eight.

package.json

~

"description”: "DaVinci eight Component Guide",
"dependencies": {

"davinci-eight": "8.4.57"
b

"name": "eight-visual-component-quide",

"version": "1.0.0",
"author": "David Geo Holmes",
"keywords": [
"STEMCstudio",
"stemcbook"

0O ~N o ol B W N -

46

https://www.stemcviewer.com/gists/b58dd9a292ab3c34044a6231d7c00b4a
https://www.stemcstudio.com/gists/b58dd9a292ab3c34044a6231d7c00b4a

There is no need to add an override to the studio.config.json file because the davinci-eight
package is fully compatible with STEMCstudio.

Inspection of the generated system.config.json file will reveal that the runtime module is defined
using the following mapping:

system.config.json

llmapll : {
"davinci-eight": "https://cdn.jsdelivr.net/npm/davinci-

eight@8.4.57/package.json"

Likewise, in the types.config.json file the type definitions are defined using the following mapping:
types.config.json
llmapll : {

"davinci-eight": "https://cdn.jsdelivr.net/npm/davinci-
eight@8.4.57/package.json"

How It Works
We’ll look at a slightly simpler example to understand how the various parts fit together:
https://www.stemcstudio.com/gists/394d7777f6d3c37bd6fc6alfe35748bf

The index.html file is quite simple. We essentialy need an HTML canvas element on which to
construct a WebGL Rendering Context.

index.html

<IDOCTYPE html>
<html>

<head>

<base href="'/"'>

<link rel="stylesheet' href="style.css'>
</head>

O ~N O U1 &~ W N =

<body>
<canvas id="my-canvas'></canvas>
</body>

47

https://www.stemcstudio.com/gists/394d7777f6d3c37bd6fc6a1fe35748bf

13 </html>

The index.ts file looks a bit daunting. Let’s break it down. The Engine is constructed on the HTML
canvas element. This essentially says that we are going to use the canvas element for WebGL
purposes. We then create a PerspectiveCamera and a DirectionalLight. These are not part of the
scene but they do modify the appearance of the scene. Each of these objects implements a Facet
interface that provides information when the scene is rendered. The various facets are collected in
an ambients array for use during rendering. The TrackballControls instance is an adapter that takes
events from your pointer device and modifies the state of the camera. A Drawable Box is
constructed. The appearance of the Box can be changed by setting various BoxOptions. Rendering is
performed by the animate function, which calls the render method of the Box.

index.ts

import {
Box,
BoxOptions,
Capability,
Color,
Directionallight,
Engine,
Facet,
PerspectiveCamera,
TrackballControls
} from "davinci-eight"

const engine = new Engine("my-canvas")
.size (500, 500)
.clearColor (0.1, 0.1, 0.1, 1.0)
.enable(Capability.DEPTH_TEST)
const ambients: Facet[] = []
const camera = new PerspectiveCamera()
camera.eye.z = 5

ambients.push(camera)

const dirLight = new DirectionallLight()
ambients.push(dirLight)

const options: BoxOptions = { color: Color.green, mode: "mesh" }
const box = new Box(engine, options)

const trackball = new TrackballControls(camera, window)

trackball.subscribe(engine.canvas)

37
38
39
49
41
42
43
44
45
46
47
48
49
)
51
52
53
54
55
56
57
58
59

Ext

const animate = function(timestamp: number) {
engine.clear()

trackball.update()

dirLight.direction.copy(camera.look).sub(camera.eye)
const t = timestamp * 0.001
box.R.rotorFromGeneratorAngle({ xy: 0, yz: 1, zx: 0 }, t)

box.render(ambients)

requestAnimationFrame(animate)

requestAnimationFrame(animate)

ending the Library

In this example we will take a look at one way in which the library can be extended to create new
objects.

In this case the extension is defined in a STEMCstudio project and so can only be
used by this project. However, you could write the extension into an external
library.

0 You can also extend the library by creating new Facet(s). The Perspective(Camera
and Directionallight are examples of predefined Facet(s).

index.ts

1
1

1 import {

2 Beginlode,

3 Capability,

4 Color,

5 Engine,

4] Facet,

7 GeometryArrays,
8 Mesh,

9 PerspectiveCamera,
] Primitive,

1 ShaderMaterial,

TrackballControls
} from 'davinci-eight’
import { black, blue, cyan, green, magenta, red, white, yellow } from './colors'
import { e2, e3 } from './space’
import { windowResizer } from './windowResizer'

const engine = new Engine('canvas')
.size (500, 500)
.clearColor(0.1, 0.1, 0.1, 1.0)
.enable(Capability.DEPTH_TEST)

const ambients: Facet[] = []

const camera = new PerspectiveCamera()
camera.eye.copy(e3 - e2).normalize().scale(5)
camera.up.copy(e3)
camera.projectionMatrixUniformName = 'P'
camera.viewMatrixUniformName = 'V’
ambients.push(camera)

const controls = new TrackballControls(camera, window)
controls.subscribe(engine.canvas)

const vertices = [
[-0.5, -0.5, +0.
[-0.5 +0.
[+0.5
[+0.5,

[-0.5,
5
5
5

-

~

I
I

~

~

[-0.
[+0.
[+0.

I

-

I

~

ol O O O O U1 O O
~

-

I

const colors = [

black,

red,

yellow,
green,

blue,
magenta,
cyan,

white

const aPositions: number[] = []
const aColors: number[] = []

function quad(a: number, b: number, c: number, d: number): void {
const indices = [a, b, ¢, a, ¢, d]

for (const index of indices) {

for (const vertex of vertices[index]) {
aPositions.push(vertex)

+
const color: Color = colors[a]
aColors.push(color.r)
aColors.push(color.qg)
aColors.push(color.b)

}

quad(1, 2)
quad(2,)
quad(3, 7)
quad(b, 2)
quad(4, 7)
quad(5, 1)

const primitive: Primitive = {
mode: BeginMode.TRIANGLES,
attributes: {
aPosition: { values: aPositions, size: 3 },
aColor: { values: aColors, size: 3 }

}

const vertexShaderSrc = (document.getElementById('vs') as HTMLScriptElement
). textContent as string

const fragmentShaderSrc = (document.getElementById('fs') as HTMLScriptElement
) .textContent as string

const geometry = new GeometryArrays(engine, primitive)

const material = new ShaderMaterial(vertexShaderSrc, fragmentShaderSrc, [],
engine)

const cube = new Mesh(geometry, material, engine)
cube.modelMatrixUniformName = 'M'

cube.normalMatrixUniformName = "N’

111

112

113

114 function animate() {

115

116 engine.clear()

117

118 controls.update()

119

120 cube.render (ambients)

121

122 requestAnimationFrame(animate)
123 }

124

125 windowResizer(engine, camera).resize()
126

127

128 requestAnimationFrame(animate)

attribute vee3 aPosition;
attribute vee3 aColor;
uniform mat4 M;

uniform mat3 N;

uniform mat4 P;

uniform mat4 V;

varying highp vec4 vColor;

1
2
3
4
5
6
1
8

(Vo)

void main(void) {

10 gl_Position = P * V * M * vec4(aPosition, 1.0);
11 vColor = vec4(aColor, 1.0);

12 }

1 precision mediump float;

2 varying highp vec4 vColor;
3

4 void main(void) {

5 gl_FragColor = vColor;
6}

3.4. Data Visualization with Plotly

Plotly

Plotly is a JavaScript Open Source Graphing Library.

JavaScript examples for various chart types are documented by the plotly maintainers at
https://plotly.com/javascript/. It is usually fairly straightforward to adapt these to TypeScript and
use them in STEMCstudio.

My Graph

D trace 0

trace 1
16
14

-
12
10
8
2 4 3] g8
X

Figure 23. Plotly

You can try the application at the following URL:
https://www.stemcviewer.com/gists/8191c1070bc5d68cd223a33f01ce4d53
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/8191¢1070bc5d68cd223a33f01ce4d53

The official npm page is https://www.npmjs.com/package/plotly.js. This page informs you of the
runtime versions and locations on the CDN. Unfortunately, the developers behind plotly don’t
provide the TypeScript type definitions. However, a number of versions are hosted on the
STEMCstudio server.

Configuring STEMCstudio to use plotly involves creating a dependency in package.json and having
an override in studio.config.json.

package.json

"description”: "plotly.js",

33

https://plotly.com/javascript/
https://www.stemcviewer.com/gists/8191c1070bc5d68cd223a33f01ce4d53
https://www.stemcstudio.com/gists/8191c1070bc5d68cd223a33f01ce4d53
https://www.npmjs.com/package/plotly.js

"dependencies": {
"plotly.js": "2.28.0"

"name": "graphing-with-plotly",
"version": "1.0.0",
"author": "David Geo Holmes",
"keywords": [

"STEMCstudio",

"template",

"stemcbook"

studio.config.json

"hideConfigFiles": false,

"hideReferenceFiles": true,

"linting": true,

"noLoopCheck": false,

"operatorOverloading": false,

"overrides": [

{
"name": "plotly.js",
"version": "2.28.0",
"system":
"https://cdn.jsdelivr.net/npm/plotly.js@2.28.0/dist/plotly.js",

"types": "https://stemcstudio.com/vendor/plotly.js@2.17.0/index.d.ts"

— —
—_ S OV OO0 ~NO Ul &~ W N =

_
w N

}

14 1,

15 "references": {},

16 "showGeneratedFiles": true
17 }

o The runtime implementation for plotly is provided by a UMD module.

As a result of this configuration, the generated system.config.json and types.config.json files will look
like:

system.config.json

types.config.json

The index.html file provides a placeholder for the chart by using a div element:

index.html

<!DOCTYPE html>
<html>

<head>

<base href="'/"'>

<link rel="stylesheet' href="style.css'>
</head>

0O ~N o OB W N -

<body>
<div id="my-graph' style="width: 500px; height:500px;"'></div>
</body>

</html>

The index.ts file configures and constructs the chart. The code differs from the official JavaScript
documentation by having a ES Module import for the package plotly.js, const variables, and the
creation of the plot using the exported newPlot function rather than the global Plotly variable:

index.ts
import { Layout, newPlot, PlotConfig, Trace } from 'plotly.js'

const tracel: Trace = {
x: [1, 2,3, 4,5,6, 7, 8],
y: [10, 15, null, 17, 14, 12, 10, null, 15],
text: ['A", 'B', 'C', 'D', 'E', 'F', 'G"],
textposition: 'top center',
mode: 'lines+text',
connectgaps: true

const trace2: Trace = {
x: [1, 2, 3, 4, 5, 6, 7, 8],
y: [16, null, 13, 10, 8, null, 11, 12],
mode: 'lines+markers',
connectgaps: true

19 const layout: Layout = {

20 title: "My Graph",

21 xaxis: { title: "x" },

22 yaxis: { title: "y" },

23 showlegend: true

24 }

25

26 const config: PlotConfig = {

27 displayModeBar: false,

28 scrollZoom: true

29 }

30
const graphDiv = document.getElementById('my-graph")
if (graphDiv) {

newPlot(graphDiv, [tracel, trace2], layout, config)

}

3.5. Charting with Chart.js

Chart.js

Chart.js is described as

Simple yet flexible JavaScript charting library for the modern web
The official web page is

https://www.chartjs.org

36

https://www.chartjs.org

[# Campaign # of Votes

Blue

B # Campaign: 21

10

Red Elue Yellow Green Purple

]

o
w

Figure 24. Chartjs

You can view a STEMCstudio sample application at the following URL:
https://www.stemcviewer.com/gists/bf1b63181171921104fd883af1219afb
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/bf1b63181f7192f104fd883af1219afb

The web page contains extensive examples. Here I will only describe the setup required to allow
Chart.js to run in STEMCstudio.

Your project will contain the obligatory index.html file.

o Because Chart.js uses the HTMLCanvasElement, your HTML document must
contain a canvas element.

index.html
1 <!'DOCTYPE html>

2 <html lang="en">
3

4 <head>
5 <meta charset="UTF-8">
6 <base href="/">

57

https://www.stemcviewer.com/gists/bf1b63181f7192f104fd883af1219afb
https://www.stemcstudio.com/gists/bf1b63181f7192f104fd883af1219afb

7 <link rel="stylesheet" href="style.css">

8 </head>

9

10 <body>

11 <div>

12 <canvas id="myChart" height="500" width="500" style="width:500px;
height:500px"' aria-label="Hello ARIA World" role="img">

13 <p>Fallback</p>

14 </canvas>

15 </div>

16 </body>

17

18 </html>

The index.ts file does the work of configuring the chart and loading the data.

index.ts
import { Chart } from 'chart.js'

const canvasElement = document.getElementById('myChart') as HTMLCanvasElement
if (canvasElement) {
new Chart(canvasElement, {
type: 'bar',
data: {
labels: ['Red', 'Blue', 'Yellow', 'Green', 'Purple', 'Orange'],
datasets: [
{

label: '# Campaign',
data: [10, 21, 3, 7, 9, 5],
borderWidth: 2

label: '# of Votes',
data: [12, 19, 3, 5, 2, 31,
borderWidth: 2

]
s
options: {
scales: {
y: o
beginAtZero: true
}

When you add a dependency for Chart.js, you will search for chart.js. One the dependency has been

added, it will be stored in the package.json file under the dependencies property.

package.json

~

"description”: "chart.js",
"dependencies": {
"chart.js": "4.4.2"

}I

"name": "chart.js",
"version": "1.0.0",

"author": "David Geo Holmes",
"private": true

S ©O 0 No Ul & WN -

—
-

STEMCstudio has an override for chart.js because the package cannot be consumed directly by only
looking at the package.json file for chart.js. The override gets stored in the studio.config.json file.
You may modify this file if you know what you are doing.

studio.config.json

—~

"hideConfigFiles": false,

"hideReferenceFiles": true,

"linting": true,

"noLoopCheck": true,

"operatorOverloading": false,

"overrides": [

{
"name": "chart.js",
"version": "4.4.2",
"system":
"https://cdn.jsdelivr.net/npm/chart.js@4.4.2/dist/chart.umd.js",

"types": "https://cdn.jsdelivr.net/npm/chart.js@4.4.2/package.json"

—_ S OV OO0 N O Ul B~ W N =

}

1,
15 "references": {},
16 "showGeneratedFiles": true
17 }

From the studio.config.json file, STEMCstudio generates the files used for design-time and run-time.
types.config.json is used at design-time and provides the location of the TypeScript type definitions.

In the case of chart.js, we only need to know the location of its package.json file to find the type
definitions.

types.config.json
|IIIHIIIl

39

map": {
"chart.js": "https://cdn.jsdelivr.net/npm/chart.js@4.4.2/package.json"

system.config.json is used at run-time and provides the location of the executable JavaScript code.
In the case of chart.js, we ignore the package.json file and elect to use the UMD module format code.

system.config.json

3.6. Symbolic Mathematics using STEMCmicro

Using Symbolic Mathematics in an educational activity provides the opportunity to create more
interesting problems.

Up till now this has been achieved by using specialized LMS plugins that invoke remote servers to
transform expressions e.g. STACK. In STEMCstudio, the approach taken is to use a library that runs
in the web browser. The ideas behind this new approach are to provide greater flexibility, to avoid
the scaling issues caused by multiple users, and avoid the installation and versioning issues with a
server-side implementation.

The definition of Symbolic Mathematics is rather broad. In the context of authoring STEMC
educational activities, we may be interested in being able to verify that the input from a student
matches some expression without regard to ambiguities in the ordering of terms and factors. One
way to do this is to take advantage of the fact that symbolic mathematics processors typically
normalize expressions and convert them to a canonical representation. This will be the focus of this
example.

There are several JavaScript libraries available, each with its own strengths and weaknesses. In this
example we will look at a library that is still under development that aims to fulfill this niche.

Our demonstration example allows the user to enter a mathematical expression. The parsed and
normalized expression tree is then rendered in multiple formats:

Expression: [x/4 |
Infix: x/a

LaTeX: \frac{x}{a}

SExpr: (* (power a -1) x)

Figure 25. Rendering a Mathematical Expression

You can try the application at the following URL:

60

https://www.stemcviewer.com/gists/245¢2b741744231399306226113a576¢
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/245¢2b741744231399306226113a576¢

Adding stemcmicro to your project is rather easy because stemcmicro natively supports the system
runtime format and the TypeScript type definitions are generated and bundled with the NPM
package. Simply search for stemcmicro when adding the dependency. Once found, the dependency
will be added to the package.json file of your project.

package.json

~

"description”: "Symbolic Math with STEMCmicro",
"dependencies": {
"@stemcmicro/engine”: "0.9.104",
"@stemcmicro/js-parse": "0.9.104"
b
"name": "symbolic-math-jsxmath",
"version": "1.0.0",
"author": "David Geo Holmes",
"keywords": [
"stemcbook",
"stemcmicro”

1
2
3
4
5
6
/
8

There are no overrides because the design-time and run-time artifacts are all in appropriate
formats and locatable through the stemcmicro package.json file. Hence, the studio.config.json
overrides property is empty.

studio.config.json

—~

"hideConfigFiles": false,
"hideReferenceFiles": false,
"linting": true,
"noLoopCheck": false,
"operatorOverloading": false,
"overrides": [],
"references": {},
"showGeneratedFiles": true

1
2
3
4
5
b
7
8
9
0

—
-

STEMCstudio determines how to locate the run-time (executable) JavaScript code and places that
information in system.config.json.

61

https://www.stemcviewer.com/gists/245c2b741744231399306226113a576c
https://www.stemcstudio.com/gists/245c2b741744231399306226113a576c

system.config.json

"map": {
"@stemcmicro/js-parse": "https://cdn.jsdelivr.net/npm/@stemcmicro/js-
parse@d.9.104/package.json",
"@stemcmicro/engine":
"https://cdn.jsdelivr.net/npm/@stemcmicro/engine@d.9.104/package.json",
"@stemcmicro/context":
"https://cdn.jsdelivr.net/npm/@stemcmicro/context@®.9.104/package.json",
"@stemcmicro/atoms":
"https://cdn.jsdelivr.net/npm/@stemcmicro/atoms@d.9.104/package.json",
"@stemcmicro/directive":
"https://cdn.jsdelivr.net/npm/@stemcmicro/directive@®.9.104/package.json",
"@stemcmicro/em-parse”: "https://cdn.jsdelivr.net/npm/@stemcmicro/em-
parse@d.9.104/package.json",
"@stemcmicro/native":
"https://cdn.jsdelivr.net/npm/@stemcmicro/native@d.9.104/package.json",
"@stemcmicro/tree":
"https://cdn.jsdelivr.net/npm/@stemcmicro/tree@®.9.104/package.json",
1 "@stemcmicro/stack":
"https://cdn.jsdelivr.net/npm/@stemcmicro/stack@d.9.104/package.json"
12 }
13 }

STEMCstudio determines how to locate the design-time TypeScript type definitions and places that
information in types.config.json.

types.config.json

"@stemcmicro/engine":
"https://cdn.jsdelivr.net/npm/@stemcmicro/engine@d.9.104/package.json",

"@stemcmicro/js-parse": "https://cdn.jsdelivr.net/npm/@stemcmicro/js-
parse@d.9.104/package.json",

"@stemcmicro/context":
"https://cdn.jsdelivr.net/npm/@stemcmicro/context@®.9.104/package.json",

"@stemcmicro/atoms":
"https://cdn.jsdelivr.net/npm/@stemcmicro/atoms@d.9.104/package.json",

"@stemcmicro/directive":
"https://cdn.jsdelivr.net/npm/@stemcmicro/directive@d.9.104/package.json",

"@stemcmicro/em-parse”: "https://cdn.jsdelivr.net/npm/@stememicro/em-
parse@d.9.104/package.json",

"@stemcmicro/native":
"https://cdn.jsdelivr.net/npm/@stemcmicro/native@d.9.104/package.json",

"@stemcmicro/stack":
"https://cdn.jsdelivr.net/npm/@stemcmicro/stack@d.9.104/package.json",

"@stemcmicro/tree":
"https://cdn.jsdelivr.net/npm/@stemcmicro/tree@d.9.104/package.json"

12
13 }

The HTML file for this example has an HTMLInputElement for input and three HTMLDivElement(s)
for output.

index.html

<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="UTF-8">

<base href="/">

<link rel="stylesheet" href="style.css">
</head>

00O N O Ul B WN -

<body>

<label for="textBox">Expression:</label>
<input id="textBox" type="text" autocomplete="off" />
<div>Ascii: </div>
<div>Human: </div>
<div>Infix: </div>
<div>LaTeX: </div>
<div>SExpr: </div>
<div>SVG : </div>

19 </body>

21 </html>

The TypeScript file for the application simply uses the stemcmicro package as a parser and renders
the parsed output in various formats.

index.ts

import { ExprEngine, create_engine } from '@stemcmicro/engine’
import { js_parse } from '@stemcmicro/js-parse’
const textBox = document.querySelector("#textBox") as HTMLInputElement

const divAscii = document.querySelector("#ascii") as HTMLSpanElement
const divHuman = document.querySelector("#human") as HTMLSpanElement
const divInfix = document.querySelector("#infix") as HTMLSpanElement
const divLaTeX = document.querySelector("#latex") as HTMLSpanElement
const divSExpr = document.querySelector("#sexpr") as HTMLSpanElement
const divSVGEx = document.querySelector("#svgex") as HTMLSpanElement

O N O U1l &~ W N =/

function keyupListener(this: HTMLInputElement, _ev: KeyboardEvent) {
divAscii.textContent = ""
divHuman. textContent

16 divInfix.textContent

17 divLaTeX. textContent

18 divSExpr.textContent

19 divSVGEx. textContent

20

21 try {

22 const engine: ExprEngine = create_engine()

23

24 const { trees, errors } = js_parse(textBox.value)
25

26 for (const error of errors) {

27 divInfix.textContent = ‘${error}’

28 return

29

30

31 (const tree of trees) {

32 const value = engine.valueOf(tree)

33 divAscii.textContent = engine.renderAsString(value, { format: 'Ascii'

})

34 divHuman.textContent = engine.renderAsString(value, { format: 'Human'

1))

35 divInfix.textContent = engine.renderAsString(value, { format: 'Infix’

3]
36 divLaTeX.textContent = engine.renderAsString(value, { format: 'LaTeX'

b

37 divSExpr.textContent = engine.renderAsString(value, { format: 'SExpr'
9]

38 divSVGEx.innerHTML = engine.renderAsString(value, { format: 'SVG' })

39 }

40 engine.release()

41 }

4) catch (e) {

43 console.warn(e)

44 }

45 }

46

47 textBox.addEventListener('keyup', keyuplistener)

48

49 window.onunload = function() {

50 textBox.removeEventListener('keyup', keyuplistener)

51 }

There is much more that you can do with the stemcmicro library.
The NPM page is https://www.npmjs.com/package/stemcmicro

The GitHub pages contain API documentation https://geometryzen.github.io/stemcmicro

https://www.npmjs.com/package/stemcmicro
https://geometryzen.github.io/stemcmicro

3.7. Rendering Mathematics in STEMCstudio

The underlying Web technology that allows STEMCstudio to support the rendering of mathematics
is called MathML. This technology is supported by most modern web browsers.

https://www.w3.org/Math
So the most direct way of rendering mathematics is simply to write MathML in your index.html file:

index.html

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<base href="/">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />
<link rel="stylesheet" href="style.css">
</head>

O 00 N O U1 & W N —

<body>
<h1>MathML Example</h1>
<math xmlns="http://www.w3.0rg/1998/Math/MathmML">
<mi>a</mi>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math>
</body>

29 </html>

The approach above requires no special support from STEMCstudio and no additional libraries
because it is built in to all browsers. However, this approach can be tedious and so it is common for
authors to express their mathematics to be rendered in a language called TeX and have some library
convert the TeX to HTML. In this book we will look at two popular libraries for converting "TeX to
HTML; MathJax and KaTeX.

65

https://www.w3.org/Math

3.8. Rendering Mathematics with MathJax

https://www.mathjax.org

Rendering mathematical notation in your application can be done by using MathJax. There are two
use cases to consider: auto rendering and manual rendering.

MathJax auto rendering

Auto rendering means that you will define static TeX expressions in your index.html file that will be
asynchronously processed by MathJax into MathML.

Implementing auto rendering in STEMCstudio is achieved by following the MathJax documentation.
This essentially involves including a script tag in your index.html file to load MathJax

index.html

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8">
<base href="/">
<link rel="stylesheet" href="style.css">
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
</script>
</head>

0O N O U1 &~ W N —

<body>
<h1>MathJax auto rendering example</h1>
<p>
When \(a \ne @\), there are two solutions to \(ax"2 + bx + ¢ = @\) and they

\[x = {-b \pm \sqrt{b"2-4ac} \over 2a}.\]
</p>
</body>

</html>

o For MathJax auto rendering it is permissable to load the MathJax script
asynchronously using the async attribute.

This example was taken from the following project:

https://www.stemcstudio.com/gists/db8545felcc107dc7c2e7521185df501

66

https://www.mathjax.org
https://www.stemcstudio.com/gists/db8545fe1cc107dc7c2e7521185df501

MathJax manual rendering

Manual rendering means that you will define dynamic TeX expressions in your *.ts files that will
be processed by MathJax into MathML.

Implementing MathJax manual rendering in STEMCstudio requires that you trigger MathJax to
render expressions on the page using the typeset function on the global MathJax object.

index.ts

1 const element = document.getElementById('xyz') as HTMLDivElement

2

3 element.innerHTML = "When \\(a \\ne O\\), there are two solutions to \\(ax"2 + bx +
c = 0\\) and they are \\[x = {-b \\pm \\sqrt{b”"2-4ac} \\over 2a}.\\]"

4

5 window[‘MathJax'].typeset()
6

7 export { }

In the example above the MathJax global variable is accessed through the global window object. This
prevents type errors being reported by short-circuiting the type checking.

In this example the loading of the MathJax script must be performed synchronously so that the
MathJax global variable is available when the typeset function is called.

index.html

<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="UTF-8">

<base href="/">

<link rel="stylesheet" href="style.css">

<script id="MathJax-script"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">

0O N O U1l &~ W N —

</script>
</head>

<body>
<h1>MathJax manual rendering example</h1>
<div id="xyz'></div>

</body>

</html>

o The async attribute is removed from the script tag so that the MathJax script is
loaded synchronously.

67

This example was taken from the following project:

https://www.stemcstudio.com/gists/8df357eac890105178b6c733704d1c64

3.9. Rendering Mathematics with KateX

KaTeX is mathematical markup rendering library developed by Khan Academy.
https://katex.org

Using KaTeX in STEMCstudio is fairly straightforward. There are two use cases to consider: auto
rendering and manual rendering.

KaTeX auto rendering

In auto-rendering, KaTeX is being used to transform TeX syntax that is embedded in your index.html
document into MathML (Mathematics Markup Language) that can be rendered by the browser. To
do this you should use the Auto-render extension as described in https://katex.org/docs/
autorender.html

Implementing auto rendering is a matter of following the KaTex auto rendering documentation by
adding appropriate link and script tags to your index.html file as follows:

index.html

<!DOCTYPE html>
<html 1lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<meta http-equiv="X-UA-Compatible" content="ie=edge" />

<base href="/">

<title></title>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />

<link rel="stylesheet" href="style.css">

<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/katex@0.16.7/dist/katex.min.css"
integrity="sha384-3UiQGuEI4TTMaFmGIZumfRPtfKQ3trwQE2]gosIxCnGmQpL/1]djpcHkaaFwHlcI"
crossorigin="anonymous">

<script defer src="https://cdn.jsdelivr.net/npm/katex@d.16.7/dist/katex.min.js"
integrity="sha384-G0zcxDFp5LWZtDuRMnBkk3EphCK11hEf4UEYEM693ka574TZGwo4IWwS6QLZM/2t"
crossorigin="anonymous"></script>

<script defer src="https://cdn.jsdelivr.net/npm/katex@d.16.7/dist/contrib/auto-
render.min.js" integrity="sha384-
+VBxd3r6XgURycqtZ117nYw4400cIax56Z4dCRWbxyPt0KoahTuHoK@o4+/RREG5"
crossorigin="anonymous"></script>

<script>

document.addEventListener ("DOMContentLoaded", function() {

S W OO0 N O Ul &~ W N =

68

https://www.stemcstudio.com/gists/8df357eac890105178b6c733704d1c64
https://katex.org
https://katex.org/docs/autorender.html
https://katex.org/docs/autorender.html

renderMathInElement(document.body, {

delimiters: [
{left: '$$', right: '$$', display: true},
{left: '$', right: '§', display: false},
{left: "\\[', right: "\\]', display: true},
{left: "\\(', right: "\\)', display: false}

Il
throwOnError : false
)5
Ik
</script>
</head>

<body>
<p>
When \(a \ne 0\), there are two solutions to \(ax"2 + bx + c = @\) and they

\[x = {-b \pm \sqrt{b"2-4ac} \over 2a}.\]
36 </p>
37 <p>1. auto-render with $$ escaping and display:true ...</p>
38 <p>$$a=bg$</p>
39 <p>2. auto-render with $ escaping and display:false</p>
40 <p>$a=b$</p>
41 <p>auto-render with [] escaping and display:true</p>
42 <p>\[a=b\]</p>
43 <p>auto-render with () escaping and display:false</p>
44 <p>\(a=b\)</p>
45 </body>
46
47 </html>

You can try the application at the following URL:
https://www.stemcviewer.com/gists/d36b89fde29ed60774d71f5af64c39cd
The code for this example can be found at the following URL:

https://www.stemcstudio.com/gists/d36b89fde29ed60774d71f5af64c39cd

KaTeX manual rendering

When rendering some TeX string in your JavaScript code so that it is visible in your HTML page you
will need to use the KaTeX API directly. Unfortunately, KaTeX is not distributed in a module format
that is compatible with STEMCstudio. This can be resolved by using a wrapper package around the
KaTeX page that exposes the code in system format. Such a package already exists and is called
@geometryzen/katex

Implementing KaTeX manual rendering in your application involes the following steps.

69

https://www.stemcviewer.com/gists/d36b89fde29ed60774d71f5af64c39cd
https://www.stemcstudio.com/gists/d36b89fde29ed60774d71f5af64c39cd

1. Add katex as a dependency to package.json
2. Create an override in studio.config. json to replace the runtime with @geometryzen/katex.
3. Define the element in your HTML where you want to output MathML.

4. Write the code to render your TeX string into the HTML element.
Here is what that looks like in the various files:

package.json

~

"description": "KaTeX demo",
"dependencies": {
"katex": "0.16.11"

}I

"name": "katex-demo",
"version": "1.0.0",

"author": "David Geo Holmes",
"private": true

S O 0 NoOo Ul & WN =

—
-

studio.config.json

~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"overrides": [],
"references": {},
"showGeneratedFiles": true

S W OO0 N O Ul B W N =

—
-

You only need to override the system property that affects the runtime.
o STEMCstudio is able to find TypeScript type definitions for KaTeX in the package
@types/katex.
Q
w

You can find a version of @geometryzen/katex to wuse from the
https://www.npmjs.com site.

index.html

1 <!DOCTYPE html>
2 <html lang="en">
3

4 <head>
5 <meta charset="UTF-8">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

70

https://www.npmjs.com

<meta http-equiv="X-UA-Compatible" content="ie=edge" />

<base href="/">

<title></title>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />

<link rel="stylesheet" href="style.css">
</head>

<body>
<p>This expression is rendered from index.ts</p>
<div id="katex"></div>

</body>

</html>

index.ts

1 import { render } from 'katex'

2

3 const element = document.getElementById('katex') as HTMLElement
4

5 render("c = \\pm\\sqrt{a”"2 + b"2}", element, {
§ displayMode: true,

7 output: "mathml’',

8 throwOnError: false

91

You can try the application at the following URL:
https://www.stemcviewer.com/gists/005b55eee6797297dd7b056597726f12
The code for this example can be found at the following URL:

https://www.stemcstudio.com/gists/005b55eee6797297dd7b056597726112

KaTeX manual rendering a third way

KaTeX is an example of a library that does not expose a granular API. This makes it
feasible to entirely encapsulate the KaTeX API using a library that defines its own

o API. We haven’t done this in the case of KaTeX because the TypeScript type
definitions work quite well with STEMCstudio and have good JSDoc comments
which futher enhances the STEMCstudio developer experience.

3.10. Code Editing using monaco-editor

monaco-editor is a browser based code editor.

You can try the application at the following URL:

71

https://www.stemcviewer.com/gists/005b55eee6797297dd7b056597726f12
https://www.stemcstudio.com/gists/005b55eee6797297dd7b056597726f12

https://www.stemcviewer.com/gists/1b9ac72f9381d7ccf68add45f147aa58
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/1b9ac72f9381d7ccf68add45f147aa58

The first step is to add monaco-editor as a dependency to your project. This can either be done by
using the Add Dependency button in the Explorer toolbar, or by editing the package.json file directly.
The end result should be the same and the package.json file will be as follows:

package.json

-~

"description": "monaco-editor",
"dependencies": {
"monaco-editor": "0.50.0"
I
"name": "monaco-editor",
"version": "1.0.0",
"author": "David Geo Holmes",
"private": true,
"keywords": [
"monaco",
"editor",
"STEMCstudio"

O N O U1l &~ W N =

The purpose of adding the dependency is to get access to the monaco.d.ts type definitions. We’ll
need an override in studio.config.json to tell STEMCstudio where to find the monaco.d.ts file.

studio.config.json

—~~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"references": {},
"showGeneratedFiles": true,
"overrides": [

{

0O NOoOY Ul &AW =

"name": "monaco-editor",
"version": "0.50.0",
"types": "https://cdn.jsdelivr.net/npm/monaco-
editor@?.50.0/monaco.d.ts"
+

]
16 }

https://www.stemcviewer.com/gists/1b9ac72f9381d7ccf68add45f147aa58
https://www.stemcstudio.com/gists/1b9ac72f9381d7ccf68add45f147aa58

We now have to load the runtime for the monaco-editor. This is done in our index.html file.

index.html

1 <!DOCTYPE html>
<html 1lang="en">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="1ie=edge" />
<base href="/">
<title></title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />
<link rel="stylesheet" href="style.css">
</head>

S O 0 No Ul & WN

<body>
<script src="https://cdn.jsdelivr.net/npm/monaco-
editor@0.50.0/min/vs/loader.js"></script>
<script>
require.config({
paths: {
vs: 'https://cdn.jsdelivr.net/npm/monaco-editor@@.50.0/min/vs’
}
};

require(['vs/editor/editor.main'], function() {
System.default]SExtensions = true
System.import('./index.js"').catch(function(e) {
console.error(e)
b
3,
</script>
30 <div id="container" style="width: 600px; height: 400px; border: 1px solid
grey"></div>
31 <button id="btn'>Press Me</button>
32 <button id='btn-reset'>Reset</button>
33 </body>
34
35 </html>

An important detail in the index.html file is that we have taken control of the loading of our index.js
file using System.import. This ensures that the index.js file loads only after the monaco-editor global
variable 'monaco’ has been set.

Finally, we are ready in index.ts to create the editor...

index.ts

import { completions } from './completions'

‘const greeting = "Hello, World"',
‘console.log(greeting)’
].join('\n")

1
2
3 const code = [
4
5

/

8 const editor = monaco.editor.create(document.getElementById('container')!, {
9 value: code,

10 lanquage: 'javascript'

(Y

12

13 monaco.editor.defineTheme("myTheme", {

14 base: "vs",

15 inherit: true,

16 colors: {

17 "editor.foreground": "#000000",

18 "editor.background": "H#FFFFFF"

19 ¥

20 rules: [

21 { foreground: "#000000", token: "" }
22]

23 })

24

25 monaco.editor.setTheme("myTheme")

26

27

28 monaco.languages.setMonarchTokensProvider("stemcmicro", {
29 tokenizer: {

30

31 }

32}

33

34 monaco.languages.typescript.javascriptDefaults.setDiagnosticsOptions({
35 noSemanticValidation: false,

36 noSyntaxValidation: false

37}

38

39

40

41

42

43

44

45

46

47

48 const extralib = monaco.languages.typescript.javascriptDefaults.addExtralib('")
49

monaco.languages.registerCompletionItemProvider('typescript’, {

provideCompletionItems: completions

}

editor.addCommand(monaco.KeyMod.Ctr1Cmd | monaco.KeyCode.KeyS, () => {
const action = editor.getAction("editor.action.formatDocument™)
if (action) {
action.run()
}
b

editor.addCommand(monaco.KeyMod.Ctr1Cmd | monaco.KeyCode.KeyR, () => {

3]
const btn = document.getElementById('btn') as HTMLButtonElement

btn.onclick = function() {
alert(editor.getValue())
}

const btnReset = document.getElementById('btn-reset') as HTMLButtonElement

btnReset.onclick = function() {
editor.setValue(code)

}

window.onunload = function() {
editor.dispose()
extralib.dispose()

}

monaco.languages.typescript.javascriptDefaults.setDiagnosticsOptions({
noSemanticValidation: true,
noSyntaxValidation: true

}

monaco.languages.registerDocumentFormattingEditProvider('javascript’, {
async provideDocumentFormattingEdits(model, _options, _token) {

return [
{
range: model.getFullModelRange(),
text: "Formatted..."

101
102

103 export { }

An important detail in this file is the export at the bottom that ensures that the index.ts file is loaded
as an EcmaScript module.

You should find that IntelliSense is working and that the 'monaco’ global variable is recognized as a
namespace.

Congratulations! You now have monaco-editor working in your STEMCstudio application.
For more information on monaco-editor, please visit the Microsoft GitHub repository:

https://github.com/microsoft/monaco-editor?tab=readme-ov-file

3.11. LMS Gradebook Integration

You can try the application at the following URL:
https://www.stemcviewer.com/gists/7378bd81ed8c8601d378f52c7cch22fe
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/7378bd81ed8c8601d378f52c7cch22fe

system.config.json

"map": {

"stemcstudio-tunnel™: "https://cdn.jsdelivr.net/npm/stemcstudio-
tunnel@1.2.3/package.json",

"@microsoft/fast-components":
"https://cdn.jsdelivr.net/npm/@geometryzen/fast-
components@d.9.6/dist/system/index.min.js",

"@microsoft/fast-element": "https://cdn.jsdelivr.net/npm/@geometryzen/fast-
element@0.9.9/dist/system/index.min.js",

"@microsoft/fast-foundation":
"https://cdn.jsdelivr.net/npm/@geometryzen/fast-
foundation@@.9.6/dist/system/index.min.js"

}
8}

types.config.json

"stemcstudio-tunnel™: "https://cdn.jsdelivr.net/npm/stemcstudio-
tunnel@1.2.3/package.json",
"emicrosoft/fast-components": "https://cdn.jsdelivr.net/npm/@microsoft/fast-

76

https://github.com/microsoft/monaco-editor?tab=readme-ov-file
https://www.stemcviewer.com/gists/7378bd81ed8c8601d378f52c7ccb22fe
https://www.stemcstudio.com/gists/7378bd81ed8c8601d378f52c7ccb22fe

components@2.30.6/package.json",

"@microsoft/fast-element": "https://cdn.jsdelivr.net/npm/@microsoft/fast-
element@1.12.0/package.json",

"@microsoft/fast-foundation": "https://cdn.jsdelivr.net/npm/@microsoft/fast-
foundation@2.49.0/package.json"

index.html

1 <!'DOCTYPE html>
2 <html lang="en">
3
4 <head>
<meta charset="UTF-8">
<base href="/">
<link rel="stylesheet" href="style.css">
</head>

<body>
<div id="container" class="container">
<div class="header">
<h2></h2>
<fast-switch id="toggle">
Luminance
Light
Dark
</fast-switch>
</div>
<div class="controls" id="controls">
<fast-number-field id="score-given' autocomplete='off' min="0">Score
Given</fast-number-field>

<fast-number-field type="text' id="score-maximum' autocomplete='off'
min="0">Score Maximum</fast-number-field>
24

25
26 <fast-select name="Activity Progress" id="activity-progress">
27 <fast-option value="Completed" selected>Completed</fast-option>
28 <fast-option value="Initialized">Initialized</fast-option>
29 <fast-option value="InProgress">InProgress</fast-option>
30 <fast-option value="Started">Started</fast-option>
31 <fast-option value="Submitted">Submitted</fast-option>
32 </fast-select>
33

34
35 <fast-select name="Grading Progress" id="grading-progress">
36 <fast-option value="Failed">Failed</fast-option>
37 <fast-option value="FullyGraded" selected>Fully Graded</fast-
option>

38
39
40
41
42
43

44
45
46
47
48
49
)
51

<fast-option value="Pending">Pending</fast-option>
<fast-option value="PendingManual">Pending Manual</fast-option>
<fast-option value="NotReady">Not Ready</fast-option>
</fast-select>

<fast-text-field id="comment' autocomplete='off'>Comment</fast-text-
field>

<fast-button id='btn-submit-answer'>Submit</fast-button>
<pre id="results"></pre>
</div>
</div>
</body>

</html>

import { gradebook, Item, Score, user } from 'stemcstudio-tunnel’

import {
allComponents,
baselLayerLuminance,
Button,
NumberField,
provideFASTDesignSystem,
Select,
StandardLuminance,
Switch,
TextField

} from "@microsoft/fast-components”

provideFASTDesignSystem(document.body).reqister(allComponents)

const toggle = document.getElementById('toggle') as Switch

const togglelLightMode = function() {
baseLayerLuminance.setValueFor (
document.body,
toggle.checked ? StandardLuminance.LightMode : StandardLuminance.DarkMode

}

toggle.addEventListener('click', toggleLightMode)

let submit: Button
let txtScoreGiven: NumberField
let txtScoreMaximum: NumberField

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

let selActivity: Select
let selGrading: Select
let txtComment: TextField

const gradebookItems: Item[] = []

function scoreFromUI(): Score {
const score: Score = {
activityProgress: selActivity.value as any,
gradingProgress: selGrading.value as any

}
const scoreGiven = parseInt(txtScoreGiven.value, 10)
if (scoreGiven) {
score.scoreGiven = scoreGiven
}
const scoreMaximum = parseInt(txtScoreMaximum.value, 10)
if (scoreMaximum) {
score.scoreMaximum = scoreMaximum
}
const comment = txtComment.value
if (comment) {
score.comment = comment

}

return score

async function submitScore() {
console.log()
try {
if (gradebookItems.length > @) {
const score: Score = scoreFromUI()
console.log(‘${ISON.stringify(score, null, 2)}")
try {
await gradebook.submitScore(gradebookItems[0].id, score)
user.alert({ title: 'Submit', message: 'Successfully submitted.'

updateResults()
} catch (e) {
user.alert({ title: 'Submit', message: ‘Something went wrong with
your submission. Cause; ${e}' })
}

+
else {

console.warn('No items in the Gradebook')

}
} catch (e) {
console.warn(e)

}

82 async function updateResults() {
83 const results = await gradebook.getResults(gradebookItems[@].1id)
84 const divResults = document.getElementById('results') as HTMLDivElement
divResults.textContent = JSON.stringify(results, null, 2)
86 }
87
88 async function ready() {
89
90
91
gradebookItems.length = 0
const items = await gradebook.getItems()
94 if (items.length === 0) {
95
96

97 const item = await gradebook.createItem({ scoreMaximum: 10, label: 'LTI
Tester' })

98 gradebookItems.push(item)

99 }

100 else {

101 for (const item of items) {

102 gradebookItems.push(item)

103 }

104 }

105 updateResults()

106 submit = document.getElementById('btn-submit-answer') as Button

107 submit.addEventListener('click', submitScore)

108 txtScoreGiven = document.getElementById('score-given') as NumberField

109 txtScoreMaximum = document.getElementById('score-maximum') as NumberField

110 selActivity = document.getElementById('activity-progress') as Select

11 selGrading = document.getElementById('grading-progress') as Select

112 txtComment = document.getElementById('comment') as TextField

113 }

114

115 ready()

116

117 window.onunload = function() {

118 submit.removeEventListener('click', submitScore)

119 toggle.removeEventListener('click', togglelLightMode)

120 }

121

122 export { }

3.12. Numeric Vector and Geometric Algebra

Manipulating geometric quantities such as scalars and vectors in a coordinate-free manner is a rite
of passage for a student and an extremely useful technique, especially in the age of computers
where such computations can be performed at speed, flawlessly, and with economical expression in

code.

Vector Algebra:

el | el =>1

el | e2 => 0
el.cross(el) => 0
el.cross(e2) => e3

Geometric Algebra:

el * e2 => el2

el * e2 => el2

e2 << (el © e2) => -el

Units of Measure (Optional):
g => -9.81*e3 m/s**2
g.direction() => -e3
g.magnitude() => 9.81 m/s**2
g.uom => 1 * m/s**2

mass => 70 kg
mass.direction() => 1
mass.magnitude() => 70 kg
mass.uom => 1 kg

F = mass * g => -686.70*e3 N
F.direction() => -e3
F.magnitude() => 686.7 N
F.uom => 1 * N

Work:

d => -2*%e3 m

W=F<<d=>1373.40 J or N-m
Figure 26. Multivectors
You can try the application at the following URL:
https://www.stemcviewer.com/gists/6d337555572454¢211182c5b45aed418

The code for this example can be found at the following URL:

https://www.stemcstudio.com/gists/6d337555572454¢c211182c5h45aed418

This example uses the '@geometryzen/multivectors' package to provide the computations:

81

https://www.stemcviewer.com/gists/6d337555572454c211182c5b45aed418
https://www.stemcstudio.com/gists/6d337555572454c211182c5b45aed418

package.json

—~

"description": "Units of Measure",
"dependencies”: {
"@geometryzen/multivectors": "0.9.11"

"version": "1.0.0",

"keywords": [
"S.I. Units",
"base",
"UNITS",
"Dimensions",
"davinci-newton",
"NEWTON",
"Geometric3",
"meter",
"kilogram",
"second",
"ampere",
"STEMCstudio",
"stemcbook"

O ~N O U1 & W N =

1,

"author": "David Geo Holmes"
24 }

The '@geometryzen/multivectors' package provides ideal resources for STEMCstudio and so no
overrides are required in the studio.config.json file. STEMCstudio generates the following entries
in system.config.json and types.config.json

system.config.json

"@geometryzen/multivectors":
"https://cdn.jsdelivr.net/npm/@geometryzen/multivectors@@.9.11/package.json"

types.config.json

11
2 "map": {
3 "@geometryzen/multivectors":

"https://cdn.jsdelivr.net/npm/@geometryzen/multivectors@®@.9.11/package.json"

The 'index.html' file defines a 'pre’ (preserve) element in which to place the result.

index.html

<!doctype html>
<html>

<head>

<base href='/"'>

<link rel="stylesheet" href="style.css">
</head>

O N O Ul &~ W N =

<body>
<pre id="info'></pre>
</body>

</html>

The 'index.ts' makes various calulations and prints the results. Note the (optional) use of operator
overloading.

index.ts

import { Geometric3 } from '@geometryzen/multivectors’
import { blue } from './colors'
import { println, printvar } from './display’

const el = Geometric3.el

const e2 = Geometric3.e2

const e3 = Geometric3.e3

const newton = Geometric3.newton
const kilogram = Geometric3.kilogram
const meter = Geometric3.meter

1
2
3
4
5
6
7
8

const g = -9.81 * e3 * newton / kilogram
const mass = 70 * kilogram

const F = mass * g

const d = -2 * e3 * meter

const W=F<<d

println('Vector Algebra:', blue)
printvar('el | e1', el | el)

printvar('el | e2', el | e2)
printvar('el.cross(el)', el.cross(el))
printvar('el.cross(e2)', el.cross(e2))
println('")

println('Geometric Algebra:', blue)
printvar('el A e2', el N e2)

printvar('el * e2', el * e2)

printvar('e2 << (e1 M e2)', e2 << (el N e2))

println('Units of Measure (Optional):', blue)
printvar('g', g)

printvar('g.direction()', g.direction())
printvar('g.magnitude()', g.magnitude())
printvar('g.uom', g.uom)

println('")

printvar('mass', mass)
printvar('mass.direction()', mass.direction())
printvar('mass.magnitude()", mass.magnitude())
printvar('mass.uom', mass.uom)

println('")

printvar('F = mass * g', F.toFixed(2))
printvar('F.direction()", F.direction())
printvar('F.magnitude()"', F.magnitude())
printvar('F.uom', F.uom)

println('")

println('Work:", blue)

printvar('d’, d)

printvar('W = F << d', W.toPrecision(6))

3.13. Simulations and the Physics Engine

This example provides an accurate simulation of elastic collisions. It uses a physics engine to
compute the motion of colliding blocks. The custom collision handling code detects when a collision
occurs and backtracks the physics engine to the collision point, applies the momenta exchanges,
and then advances the simulation. The JsxGraph package is used to render the simulation, and
JsxGraph is wrapped by another external package as blocks with a visual representation and a
model that comes from the physics engine.

84

wn

Figure 27. Collision Handling

You can try the application at the following URL:
https://www.stemcviewer.com/gists/0436144a07ae10e84a8619a17c4cb4ee
The code for this example can be found at the following URL:
https://www.stemcstudio.com/gists/0436144a07ae10e84a8619al7c4ch4ee

system.config.json

"@geometryzen/multivectors":
"https://cdn.jsdelivr.net/npm/@geometryzen/multivectors@@.9.11/package.json",

"@geometryzen/newton" :
"https://cdn.jsdelivr.net/npm/@geometryzen/newton@@.9.2/package.json",

"jsxgraph":
"https://cdn.jsdelivr.net/npm/jsxgraph@1.10.1/distrib/jsxgraphcore.js",
"@geometryzen/newton-jsxgraph-widgets":
"https://cdn.jsdelivr.net/npm/@geometryzen/newton-jsxgraph-
widgets@@.9.1/package.json"
}
8}

85

https://www.stemcviewer.com/gists/0436144a07ae10e84a8619a17c4cb4ee
https://www.stemcstudio.com/gists/0436144a07ae10e84a8619a17c4cb4ee

types.config.json

"map": {
"@geometryzen/multivectors":
"https://cdn.jsdelivr.net/npm/@geometryzen/multivectors@@.9.11/package.json",
"@geometryzen/newton" :
"https://cdn.jsdelivr.net/npm/@geometryzen/newton@d.9.2/package.json",
"jsxgraph": "https://cdn.jsdelivr.net/npm/jsxgraph@1.10.1/package.json",
"@geometryzen/newton-jsxgraph-widgets":
"https://cdn.jsdelivr.net/npm/@geometryzen/newton-jsxgraph-
widgets@@.9.1/package.json"
}
8}

index.html

1 <!DOCTYPE html>
<html lang="en'>

<head>
<meta charset="UTF-8">
<title>]SXGraph template</title>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<base href="/">
<link rel="stylesheet'
href="https://cdn.jsdelivr.net/npm/jsxgraph@1.10.0/distrib/jsxgraph.css" />
<link rel="stylesheet' href="style.css" />
</head>

2
3
4
5
b
7
8
9

<body>
<div id="jxgbox"' class="jxgbox' style="width:500px; height:500px'></div>
</body>

</html>

import {
Block2,
Engine2,
Geometric?
} from '@geometryzen/newton’
import { JsxBlock } from '@geometryzen/newton-jsxgraph-widgets'
import { JSXGraph } from 'jsxgraph'
import { interactBodies } from './interactBodies'
import { writeToDOM } from './writeToDOM'

const el = Geometric2.el
const kg = Geometric2.kilogram

const Geometric2.meter
const Geometric2.second

const sim = new Engine2()
const At = 0.01 * s

const bodies: Block2[] = []

const width = m

const height = m

const blockA = new Block2(width, height)
bodies.push(blockA)

const blockB = new Block2(width * 2, height * 2)
bodies.push(blockB)

const wallL = new Block2(width * 0.5, height * 8)
bodies.push(walll)

const wallR = new Block2(width * 0.5, height * 8)
bodies.push(wallR)

blockA.M = 1 * kg
blockA.X = (-3 * e1) * m
blockA.P = 10 * e1 * kg *m / s

blockB.M = 4 * kg
blockB.X = (@ * e1) * m
blockB.X = @ * m

wallL.M = 100000000 * kg
wallL.X = (-5.25 * e1) * m

wallR.M = 100000000 * kg
wallR.X = (5.25 * e1) * m

sim.addBody(blockA)
sim.addBody(blockB)
sim.addBody(walll)
sim.addBody(wallR)

const board = JSXGraph.initBoard('jxgbox', {
axis: true,
boundingBox: [-6, 6, 6, -6],
showCopyright: true,
showNavigation: false,
showFullscreen: false,
showScreenshot: true

const viewA = new JsxBlock(board, blockA)

63 const viewB = new JsxBlock(board, blockB)
64 const viewlL = new JsxBlock(board, walll)
65 const viewR = new JsxBlock(board, wallR)
66

67 const animation = function() {

68 try {

09 interactBodies(bodies, sim)

70 sim.advance(At.a, At.uom)

71 viewA.update()

12 viewB.update()

73 viewl .update()

74 viewR.update()

75 board.update()

76

17 window.requestAnimationFrame(animation)
78 }

79 catch (e) {

80 writeToDOM(e)

81 }

82 }

83

84 window.requestAnimationFrame(animation)

3.14. Summary

We have been introduced to some useful libraries that will make it possible to produce powerful
STEM Learning Activities with less code.

88

Chapter 4. Application Frameworks

This chapter will be about how to consider whether or not to use an application framework, what
choices are available, and what is recommended.

4.1. What is a Web Application Framework?

A Web Application Framework provides an alternative way to interact and update the DOM that
may streamline the developer experience of DOM updating and may also encourage a more
modular approach to assembling a web application. Increasingly, modern frameworks will use an
alternate representation for the DOM from pure HTML and will require a compiler to convert the
developer source code into JavaScript for execution.

4.2. Nothing

It’s not the name of the latest JavaScript application framework. What I mean by this is that you
code directly to the Document Object Model (DOM) in order to create your dynamic user interface.

This will work OK for very small applications but is likely to become tedious and repetitive for size
and quality of applications that we are trying to achieve.

It is a good approach to take if you are just getting started with STEMCstudio and are new to web
development.

An excellent resource for learning web development is https:/developer.mozilla.org/en-US/docs/
Learn.

4.3. Web Components

Again, not a framework, but a very attractive way to build large-grained components. When these
components are deployed in external packages there is considerable opportunity for reuse and
application simplification.

4.4. React

g

https://react.dev

Introduction

React is a popular approach to building web user interfaces. This section describes the steps you
must take to use React in STEMCstudio. It is not a general React tutorial.

89

https://developer.mozilla.org/en-US/docs/Learn
https://developer.mozilla.org/en-US/docs/Learn
https://react.dev

How it Works

React is described as a library for building user interfaces. It provides an excellent Developer
Experience (DX) because of its technical underpinnings; React uses the jsx standard as the file
format which is an extension of JavaScript to support HTML creating through the DOM.
Furthermore, this format is understood by TypeScript and extended to give a tsx standard, which is
jsx_ with TypeScript type annotations. What this amounts to is that the STEMCstudio development
environment is able to give you lots of help in authoring your user interface code.

Getting Started

The package dependencies required for running React in STEMCstudio are react, react-dom, csstype,
and prop-types

—~

"description”: "Modern React Template",
"dependencies": {

"csstype": "3.1.3",

"prop-types": "15.8.1",

"react": "18.3.1",

"react-dom": "18.3.1"

1
2
3
4
5
6
/
8

I
"name": "modern-react-template",
"version": "1.0.0",
"author": "David Geo Holmes",
"private": true,
"keywords": [

"React",

"function"

In addition to adding the dependencies to your package.json file, it will be necessary to define
overrides in studio.config.json:

-~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"overrides": [

{

O N O U1l &~ W N =

"name": "csstype",

"version": "3.1.2",

"system": "https://cdn.jsdelivr.net/npm/csstype@3.1.2/package.json",
"types": "https://cdn.jsdelivr.net/npm/csstype@3.1.2/package.json"

90

"name": "prop-types",
"version": "15.8.1",
"system": "https://cdn.jsdelivr.net/npm/prop-types@15.8.1/umd/prop-

types.js",
"types": "https://cdn.jsdelivr.net/npm/@types/prop-
types@15.7.5/package.json"
¥
{
"name": "react",
"version": "18.3.1",
"system":
"https://cdn.jsdelivr.net/npm/react@18.3.1/umd/react.development.js",
"types":
"https://cdn.jsdelivr.net/npm/@types/react@18.3.3/package.json"
7
{
"name": "react-dom",
"version": "18.3.1",
"system": "https://cdn.jsdelivr.net/npm/react-dom@18.3.1/umd/react-dom-
development.js",
"types": "https://cdn.jsdelivr.net/npm/@types/react-
dom@18.0.10/package.json"
}
1

"references": {},
"showGeneratedFiles": true

Finally the jsx property in tsconfig.json should be configured to compile JavaScript extensions for
react.

-~

"allowls": false,
"allowSyntheticDefaultImports": true,
"declaration": false,
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"jsx": "react",

"module": "system",

"noImplicitAny": true,
"noImplicitReturns”: true,
"noImplicitThis": true,
"noUnusedlLocals": true,
"noUnusedParameters": true,
"preserveConstEnums": true,
"removeComments": true,

"sourceMap": false,

"strict": true,

"strictNullChecks": true,
"suppressImplicitAnyIndexErrors": true,

O N O U1 &~ W N =

20 "target": "esnext",
21 "traceResolution": true
22 }

You are now ready to create your STEMCstudio application using the React framework.
The boilerplate code for bootstrapping your application is in the index.tsx file.
import * as React from 'react’

import { createRoot } from 'react-dom/client’
import { App } from './App'

const container = document.getElementById('root")
if (container) {
const root = createRoot(container)
root.render (<App message="World" />)

O N O U1 &~ W N =

window.onunload = function() {
root.unmount()

The index.html file contains an HTMLDivElement, which is the mounting point for the App.

<!DOCTYPE html>
<html>

<head>

<base href="'/">

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />

<link rel="stylesheet' href="style.css'>
</head>

<body>
<div id="root'></div>

</body>

</html>

The App.tsx file contains the top-level component.

In this example, App is a function component, which is the modern and
(;) recommended way to implement React applications. The legacy approach was to
et extends a base class Component that is provided by the react package.

1 import * as React from 'react’

2 import { CSSProperties, FunctionComponent, ReactNode } from 'react’
3 import { MyButton } from './MyButton'
4
5 interface AppProps {
message: string,
style?: CSSProperties,
children?: ReactNode

}

export const App: FunctionComponent<AppProps> = (props) => {
return (
<div>
<h1 style={props.style}>Hello, {props.message ?? "World"}!</h1>
<MyButton />
<div>{props.children}</div>
</div>

4.5. SolidJS

-~

https://solidjs.com

Introduction

Solid]S is a relative newcomer to the application framework space.

How it Works

Solid]S uses a paradigm known as signals to propagate changes in values to become DOM updates.
It also makes use of JavaScript extensions (jsx) for the authoring of HTML components. The
approach is described by the author as fine-grained reactivity with the goal of high performance.

Getting Started

A template exists if you are creating a new project. What follows is a description of the unique
Solid]S features of that the template, or how to modify your project so that it supports Solid]S.

The package dependencies required for running Solid]S in STEMCstudio are solid-js, and csstype.

"description”: "Solid]S Template",

"dependencies": {
"csstype": "3.1.3",
"solid-js": "1.8.17"

93

https://solidjs.com

I
"name": "solid-js-template",
"version": "1.0.0",
"author": "David Geo Holmes",
"private": true,
"keywords": [

"Solid",

"Js",

"Reactive",

"JavaScript",

"JSX",

"TSX"

In addition to adding the dependencies to your package.json file, it will be necessary to define
overrides in studio.config.json:

—~~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"overrides": [

{

1
2
3
4
5
b
7
8

"name": "csstype",

"version": "3.1.3",

"system": "https://cdn.jsdelivr.net/npm/csstype@3.1.3/package.json",
"types": "https://cdn.jsdelivr.net/npm/csstype@3.1.3/package.json"

"name": "solid-js",
"version": "1.8.17",
"system": "https://cdn.jsdelivr.net/npm/@geometryzen/solid-
js@1.8.17/package.json",
"types": "https://cdn.jsdelivr.net/npm/solid-js@1.8.17/package.json"
}
1.

21 "references": {},

22 "showGeneratedFiles": true

23 }

Finally the jsx and jsxImportSource properties in tsconfig.json should be configured to compile
JavaScript extensions appropriate for Solid]S.

14

2 "allowls": true,

"allowUnreachableCode": false,
"check]s": false,
"declaration": false,
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"forceConsistentCasingInFileNames": true,
"jsx": "preserve",
"jsxImportSource": "solid-js",
"module": "system",
"noImplicitAny": true,
"noImplicitReturns”: true,
"noImplicitThis": true,
"noUnusedlLocals": true,
"noUnusedParameters": true,
"preserveConstEnums": true,
"removeComments": false,
"skipLibCheck": true,
"sourceMap": false,

"strict": true,
"strictNullChecks": true,
"suppressImplicitAnyIndexErrors": true,
"target": "esnext",
"traceResolution": true

You are now ready to create your STEMCstudio application using the Solid]S framework.

The boilerplate code for bootstrapping your application is in the index.tsx file.

import { render } from "solid-js/web"
import { App } from "./App.js"

const cleanup: () => void = render(() => <App />, document.getElementById('app')!)

window.onunload = function() {
cleanup()

0O NOoOY Ul AW N -

}

The index.html file contains an HTMLDivElement, which is the mounting point for the App.

1 <IDOCTYPE html>

2 <html lang="en">

3

4 <head>

5 <meta charset="UTF-8">

6 <base href="/">

7 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />

8 <link rel="stylesheet" href="style.css">

9 </head>

10

11 <body>

12 <div id="app"></div>
13 </body>

14

15 </html>

1 import type { JSX } from 'solid-js'
2

3 export function App(): JSX.Element {
4 return <h1>Hello, World!</h1>

5}

4.6. Svelte

S

https://svelte.dev

Introduction

Svelte is relative newcomer to the web application framework space.

The Svelte implementation in STEMCstudio is experimental. Issues can happen if
the version of Svelte used to compile your *.svelte files does not match the

A version of the Svelte dependency in your project. This should not affect any
projects that have been compiled and deployed. For now, only the 3.59.1 version
of Svelte is supported.

How it Works

Svelte uses its own proprietary svelte format to define the user interface. Svelte employs a compiler
to convert the propietary format into executable JavaScript. The proprietary svelte format looks like
HTML with embedded JavaScript in script tags and is designed to reduce the amount of code
needed to create fragments of HTML, but it is at the expense of less powerful tooling. To date, there
is no first-class parser and analyzer for svelte files.

Getting Started

A template exists if you are creating a new project. What follows is a description of the unique
Svelte features of that the template, or how to modify your project so that it supports Svelte.

The package dependencies required for running Svelte in STEMCstudio are svelte.

96

https://svelte.dev

~

"description”: "Svelte 5 Template",
"dependencies": {

"svelte": "5.0.0-next.142"
I
"name": "svelte-template",
"version": "1.0.0",
"author": "David Geo Holmes",
"keywords": [

"Svelte",

"STEMCstudio"

0O N O U1 &~ W N —

]I

"private": true

In addition to adding the dependencies to your package.json file, it will be necessary to define
overrides in studio.config.json:

~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"overrides": [
{
"name": "svelte",
"version": "5.0.0-next.142",
"system": "https://cdn.jsdelivr.net/npm/@geometryzen/svelte@5.0.0-
next.142/package.json",
"types": "https://cdn.jsdelivr.net/npm/svelte@5.0.0-
next.142/package.json"
13 }
14 1
15 "references": {},
16 "showGeneratedFiles": true
17 }

1
2
3
4
5
b
7
8
9
0
1

1
1

—
No

You are now ready to create your STEMCstudio application using the Solid]S framework.

The boilerplate code for bootstrapping your application is in the index.ts file.

1 import { mount, unmount } from 'svelte'

2 import App from './App.svelte'

3

4 const app = mount(App as any, {

5 target: document.getElementById("app")!,
6 props: {}

7})

8

9 window.onunload = function() {
10 unmount (app)

11 }

12

13 export default app

The index.html file contains an HTMLDivElement, which is the mounting point for the App.

<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="UTF-8">

<base href="/">

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/modern-css-
reset/dist/reset.min.css" />

<link rel="stylesheet" href="style.css">
</head>

<body>
<div id="app"></div>
</body>

</html>

<script>
import {
onMount,
onDestroy
} from 'svelte'

let name = $state("Svelte")
let count = $state(0)

function increment() {

count += 1

}

let double = $derived(count * 2)
onMount(() => {

1)

onDestroy(() => {

b

</seript>
<h1>Hello, {name}!</h1>
<button on:click={increment}>

clicks: {count}
</button>

<p>Double that is {double}</p>

<style>
h1 {
color: blue;

}
</style>

4.7. Summary

STEMCstudio applications can built with any combination of the supported application frameworks
(React, Solid]S, and Svelte), Web Components, and native DOM APIs.

99

Appendix A: Authoring JavaScript Libraries

This chapter will provide a concrete, step-by-step, example of how to author a modern JavaScript
library. Nothing in this chapter is specific to STEMCstudio. However, a library incorporating
modern best practices will provide the best developer experience for someone using your library.

A.1. Best Practices

This section describes the features that are considered best practices in modern JavaScript libraries.

Smart Editor Support using Type definitions

We would like the consumer of the library to be supported with smart editor features such as type
checking and autocompletion. We will accomplish this by shipping a type definition file, index.d.ts
with our library that contains TypeScript type definitions for our JavaScript library. Furthermore,
we will generate this file so that it always stays synchronized with the implementation code.

Documentation Generation

We would like to provide the consumer of the library with web pages that describe the
consumption of the library in detail. We will automatically generate the documentation from the
code and make it available as GitHub pages.

Comprehension depends on Implementation Language

We would like the maintainers of the library to be able to easily understand the implementation
code whether they are the original author or not, and even if some time has elapsed since the code
was written. The best practice for doing this is to use TypeScript rather than JavaScript as the
implementation language. TypeScript is easily learned because it is simply JavaScript with
additional type information sprinkled on top. Utilities exist for automatically stripping the type
information to reveal the executable JavaScript code.

Reliability aided by Automated Testing

We would like the maintainers of the code to be able to easily run test suites to verify the integrity
of the code. Our test runner of choice will be mocha because it is agnostic as to the assertion
framework. We will use chai as the assertion framework and library because it provides a choice of
several assertion styles. We will also add coverage testing so that we can see what has been tested.

Module Formats and Code Bundling

There is a gradual move to composing libraries from EcmaScript modules (ESM), and often with
many files. While this provides opportunity for tree-shaking in applications, some consumers will
benefit from bundled code in particular formats. We will offer several formats; ESM, UMD, and System.
STEMCstudio is able to consume any of these formats as long as they are bundled. STEMCstudio
uses the System format for execution and so this is the most efficient way to consume your library in
STEMCstudio. Our choice of bundler will be rollup. Another popular choice is webpack, but this tends

100

to be used more for web applications, with rollup being used for libraries.

Bundling Types

STEMCstudio requires the type information to be bundled into one file. We will do this
automatically using a rollup plugin.

Publishing and Consumption

We would like our library to be readily available for download from a Content Delivery Network.
We will use https://unpkg.com for that purpose. Simply publishing our library to npm will make it
available on this CDN. STEMCstudio can then pull in the implementation code and the type
definitions by specifying their URLs in your STEMCstudio application. The consumer gets to choose
the version of the library that is appropriate for their application.

Shared Dependencies

We would like to make sure that if our library depends on another library that we can choose
whether to bundle that dependency or leave the choice of dependency version to the application
developer. The latter is usually preferable for reducing code bloat. We will achieve this using the
peerDependencies feature in our package. json file.

A.2. Step by Step Guide

I find it easier to create my GitHub repository first. Let’s do that.
Sign into GitHub as the account that will own the library.

Select the Repositories tab.

Click the New button.

Give the repository a name. e.g. my-1ib.

Add a README .md file by checking the check box.

Choose a license. MIT is usually a good choice.

Click the Create repository button. The repository will be created with a LICENSE file and README.md
file.

Click the Code button and copy the SSH URL to the clipboard.

Open a new terminal. Navigate to the folder that you want to be the parent of your local repository
folder. Clone the repository by executing a command similar to the following. Substitute your
owner name for geometryzen, and your repository name for my-lib.

git clone git@github.com:geometryzen/my-1ib.git

101

https://unpkg.com

Change directory to enter the repository folder.

cd my-1ib

Initialize npm to create the package. json file using the following command:

npm init

Accept the defaults and/or make any changes. You will be able to update the values later.

Now is a good time to fire up your favorite Integrated Development Environment (IDE). Mine is
Visual Studio Code.

code .

Install TypeScript as a development dependency.

npm i -D typescript

Create the tsconfig.json file with the command:

npx tsc --init

Modify the contents of the tsconfig.json file to have the following property values.

—~

"compilerOptions": {
"target": "esnext",
"module": "esnext",
"moduleResolution": "node",
"declaration": true,
"declarationDir": "types",
"emitDeclarationOnly": true,
"sourceMap": true,
"outDir": "build",
"esModuleInterop”: true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"noImplicitAny": true,
"strictNullChecks": false,
"noImplicitThis": true,
"noUnusedlLocals": true,
"noUnusedParameters": false,
"noImplicitReturns": true,

O N O Ul &~ W N =/

102

20 "skipLibCheck": true,

21 "removeComments": false,

22 "resolvelsonModule": true

23 iy

24 "include": ["./src/**/*.ts", "./rollup.config.mts", "./rollup-plugin-
dts.d.ts"],

25 "exclude": ["node_modules"]

26 }

It’s now time to start adding some implementation source files. Let’s create the source folder and
add an empty TypeScript file.

mkdir src

cd src

touch index.ts
cd ..

Modify the index.ts file to have the following content. This will enable us to test a thin vertical slice
from our library to STEMCstudio.

/**

* Constructs a personalized string that can be used to greet a person.
* @param name The name of the person receiving the greeting.
* @returns a greeting string containing the name of the person receiving the
greeting.
*/
export function greeting(name: string): string {
return ‘Hello, ${name}!"‘;

}

We’ll now verify that it builds correctly by adding a script to package. json.

"scripts": {
"build": "tsc",
"test": "echo \"Error: no test specified\" && exit 1"

h

Now execute the following command.

npm run build

This should create a file index.d.ts in the types folder with the contents...

/**

* Constructs a personalized string that can be used to greet a person.

* @param name The name of the person receiving the greeting.

* @returns a greeting string containing the name of the person receiving the
greeting.

*/

declare function greeting(name: string): string;

export { greeting };

Module Formats and Bundling.

I’'s now time to install packages associated with rollup, define a configuration file
rollup.config.mts and wire it all together. Let’s start with creating the configuration file in the
project root.

touch rollup.config.mts

Give this file the following contents

import commonjs from '@rollup/plugin-commonjs’;

import resolve from '@rollup/plugin-node-resolve’;

import terser from '@rollup/plugin-terser’;

import typescript from '@rollup/plugin-typescript’;

import { RollupOptions } from 'rollup';

import dts from 'rollup-plugin-dts’;

import peer_deps_external from 'rollup-plugin-peer-deps-external’;
import pkg from './package.json' assert { type: 'json' };

1
2
3
4
5
b
/
8

function non_minified_file(path: string): string {
return path.replace(".min.js", ".js");

}

const banner = ‘/**

* ${pkg.name} ${pkg.version}

* (c) ${pkg.author.name} ${pkg.author.email}
* Released under the ${pkg.license} License.
*/

“otrim();

const options: RollupOptions[] = [
{
input: './src/index.ts',
output: [
{
banner,
file: non_minified_file(pkg.exports['."].import),

format: 'esm',
sourcemap: true

file: pkg.exports['.'].import,
format: 'esm',
sourcemap: true,

plugins: [terser()]

banner,

file: non_minified_file(pkg.exports['."'].system),
format: 'system',

sourcemap: true

file: pkg.exports['.'].system,
format: 'system',

sourcemap: true,

plugins: [terser()]

banner,

file: pkg.exports['.'].require,
format: 'commonjs',

sourcemap: true

file: pkg.browser,
format: 'umd',
name: 'MYLIB',
sourcemap: true

}

1,
plugins: [

commonjs(),

peer_deps_external() as Plugin,

resolve(),

typescript({ tsconfig: './tsconfig.json', exclude: ['**/*
noEmitOnError: true })

]

b

{
input: './dist/esm/types/src/index.d.ts",
output: [{ file: pkg.types, format: "esm" }],
plugins: [dts()]

81 export default options;

Install the rollup related packages

npm i -D @rollup/plugin-commonjs
npm i -D @rollup/plugin-node-resolve

npm i -D @rollup/plugin-terser
npm i -D @rollup/plugin-typescript

npm i -D rollup-plugin-dts
npm i -D rollup-plugin-peer-deps-external

I'm going to change the name property in package.json to show how the name of the package is
distinct from the name of the repository.

If you do this and create your package under an organization like @geometryzen
then you will have to either pay for the privilege to be private or ensure that your
package is publicly accessible.

Now lets fix up the properties in package.json that define the relative locations of the distribution
resources. We do this using the "exports" property. The "module” property is the ESM entry point.

—~

"name": "@geometryzen/my-1ib",

"version": "0.9.26",

"description”: "My TypeScript Library Template",

"exports": {

A

"types": "./dist/index.d.ts",
"import": "./dist/esm/index.min.js",
"require": "./dist/commonjs/index.js",
"system": "./dist/system/index.min.js",
"default": "./dist/esm/index.min.js"

—_ S OV OO0 NOoO Ul &~ W N =

—

Finally, change the build script in package.json to read

"build": "rollup -c"

Let’s give our bundled build a try...

npm run build

106

The dist folder should now contain subfolders for the formats cjs, esm, system, and umd. Each of
those folders should contain at least an index.js file, which is the bundled implementation. The
dist folder should also contain an index.d.ts file, which is our bundled type definitions.

Unit Testing

Testing your library is always a good idea. However, depending upon the nature of your library, the
payback from automatic testing may vary. In general, JavaScript resources that don’t use the
Document Object Model (DOM) are easier to test. Code that does use the DOM can be tested using
various test runners or DOM simulators, but may benefit from manual visual inspection of the
output. In this example we will assume that the testing required does not involve the DOM.

Our testing approach will be to use Jest as our test runner and assertion library.

Install the following dependencies:

npm i -D jest
npm i -D @types/jest

npm i -D ts-jest
npm i -D ts-jest-resolver

Create the folder that will contain our tests.

mkdir tests

Now let’s add the configuration file for Jest which is called jest.config.ts:

touch jest.config.ts

And here are the contents of jest.config.ts:

1 import type { Config } from "jest";
2

3 const config: Config = {

4 preset: "ts-jest",

5 resolver: "ts-jest-resolver"
6}

7

8 export default config;

Change the package.json script for test to read:

"test": "jest"

And now you can run your unit tests with the command:

107

npm run test

You may find it useful to add the following script to package.json:

"pretest": "npm run build",

Coverage

A report of what you have tested and to what extent is called a coverage report. It is important
because it will help you decide where you need to add testing before refactoring or simply to
improve confidence in your code.

Add a script to the package.json to create the coverage report when the tests are run:

"coverage": "npm run test -- --coverage"

And now you can obtain a coverage report with the command:

npm run coverage

Documentation

npm i -D typedoc
npm i -D trash
npm i -D open-cli

touch typedoc.json

"entryPoints": ["src/index.ts"],
"out": "docs",

"exclude": "src/**/*.spec.ts",
"excludePrivate": true,

"theme": "default"

Add a script to the package.json to create the documentation:

"docs": "npm run docs:typedoc && open-cli docs/index.html",

"docs:typedoc": "trash docs && typedoc --options typedoc.json"

108

And now you can create documentation with the command:

npm run docs

The coverage report is an HTML page, index.html, that can be found in the coverage folder.

GitHub Pages

It would be nice to deploy our documenttaion to the web so that others can read it. For this we will
use a technology called GitHub Pages.

Install the utilty that will transfer our documentation to GitHub.

npm i -D gh-pages

Add a script to package.json:

"pages”: "npm run docs:typedoc && gh-pages -d docs"

Try it out:

The documentation should be visible at https://owner.github.io/repo.
Linting

npm i -D eslint

npm i -D @typescript-eslint/eslint-plugin

npm i -D @typescript-eslint/parser

eslint.config.js

touch eslint.config.js

import eslintJs from "@eslint/js";

import typescriptEslint from "@typescript-eslint/eslint-plugin”;
import typescriptParser from "@typescript-eslint/parser";

import eslintConfigPrettier from "eslint-config-prettier";
import globals from "globals";

109

https://owner.github.io/repo

6 import eslintTs from "typescript-eslint";

export default [
{
10 ignores: ["build/**", "coverage/**", "dist/**", "docs/**",
"node_modules/**", "types/**", "www/**"]
11 I
12 {
13 files: ["**/*.ts"],
14 languageOptions: {
15 parser: typescriptParser,
16 parserOptions: {},
17 globals: globals.browser
18 ¥
19 plugins: {
20 "otypescript-eslint": typescriptEslint
21 +,
22 rules: {
23 // Make this "error" when releasing.
24 "brace-style": [2, "stroustrup"],
25 "no-console": "warn",
26 "no-param-reassign": "off",
27 semi: [2, "always"]
28 }
29 1,
30 eslint]s.configs.recommended,
31 ...eslintTs.configs.recommended,
32 eslintConfigPrettier
33 1;

Add a script to package.json:

"lint": "eslint . --ext .ts"

Try it out:

npm run lint

Test Driven Development

I'll add the following script to package.json:

"dev": "rollup -c -w",

Here is the complete package.json file:

~

"name": "@geometryzen/my-1ib",

"version": "0.9.26",

"description”: "My TypeScript Library Template",

"exports": {

A

"types": "./dist/index.d.ts",
"import": "./dist/esm/index.min.js",
"require": "./dist/commonjs/index.js",
"system": "./dist/system/index.min.js",
"default": "./dist/esm/index.min.js"

0O N O U1 &~ W N —

}
},
"browser": "./dist/umd/index.js",
"main": "./dist/commonjs/index.js",
"module": "./dist/esm/index.min.js",
"type": "module",
"types": "./dist/index.d.ts",
"files": [
"dist/commonjs/index.js",
"dist/commonjs/index.js.map",
"dist/esm/index.js",
"dist/esm/index.js.map",
"dist/esm/index.min.js",
"dist/esm/index.min.js.map",
"dist/index.d.ts",
"dist/system/index.js",
"dist/system/index.js.map",
"dist/system/index.min.js",
"dist/system/index.min.js.map",
"dist/umd/index.js",
"dist/umd/index.js.map"
1,
"keywords": [
"geometryzen",
‘my",
"lib"
1,
"publishConfig": {
"access": "public"
},
"scripts": {
"build": "npm run clean && rollup --config rollup.config.mts --configPlugin
@rollup/plugin-typescript”,
"check": "npx package-check",
"clean": "rm -rf coverage & rm -rf dist & rm -rf docs & rm -rf es2015 &&
rm -rf system && rm -rf types && rm -rf build",
"coverage": "npm run test -- --coverage",
"dev": "rollup --config rollup.config.mts --configPlugin @rollup/plugin-
typescript -w",

"docs": "npm run docs:typedoc && open-cli docs/index.html",
"docs:typedoc": "rm -rf docs &% typedoc --options typedoc.json",
"format:check": "prettier --check '**/*.{js,ts,tsx,css,yml,json}
"format:write": "prettier --write '**/*.{js,ts,tsx,css,yml,json}
"lint": "eslint .",

"pages": "npm run docs:typedoc && gh-pages -d docs",

"release": "release-it",

"test": "jest"

b
"repository”: {
"type": llg_itlll
"url": "git+https://qgithub.com/geometryzen/my-1ib.git"

b
"author": {
"name": "David Geo Holmes",
"email": "david.geo.holmes@gmail.com"
},
"license": "MIT",
"bugs": {
"url": "https://github.com/geometryzen/my-1ib/issues”
b
"homepage": "https://github.com/geometryzen/my-1lib#readme"”,
"devDependencies": {
"@rollup/plugin-commonjs": "A28.0.0",
"@rollup/plugin-node-resolve": "A15.3.0",
"@rollup/plugin-terser”: "70.4.4",
"@rollup/plugin-typescript": "A1.1.6",
"@skypack/package-check": "70.2.2",
"etypes/jest": "A29.5.13",
"@types/rollup-plugin-peer-deps-external™: "A2.2.5",
"etypescript-eslint/eslint-plugin”: "78.8.1",
"@typescript-eslint/parser": "78.8.1",
"eslint": "78.57.0",
"eslint-config-prettier": "79.1.0",
"gh-pages": "76.1.1",
"jest": "A29.7.0",
"open-cli": "78.0.0",
"prettier": "73.3.3",
"release-it": "M7.7.0",
"rollup": "74.24.0",
"rollup-plugin-dts": "76.1.1",
"rollup-plugin-peer-deps-external”: "A2.2.4",
"ts-jest": "729.2.5",
"ts-jest-resolver": "72.0.1",
"ts-node": "A10.9.2",
"tslib": "A2.7.0",
"typedoc": "710.26.8",
"typescript": "75.6.3",
"typescript-eslint": "78.8.1"

r

I

98 }

Integration Testing
How can we test our library before actually publishing it to npm?
We will make use of the npm link command to create symbolic links.

See https://github.com/geometryzen/my-app for a test harness example.

Publishing to npm

We’re now almost ready to publish.

The following script in package.json can be used to execute other scripts prior to publishing:

"prepublishOnly": "npm run build && npm run test && npm run lint && npm run pages”,

We use the .npmignore file to control what artifacts are published to npm.

Create the .npmignore file in the root of your project.

touch .npmignore

The npm pack command is used to pack a tarball that contains the artifacts in your project. The
following command can be used to inspect the artifacts that will be published to npm without
actually creating a tarball file.

npm pack --dry-run

The contents of your .npmignore file should look something like:

CODE_OF _CONDUCT .md
CONTRIBUTING.md
coverage/

docs/

src/

tests/

types/

O ~N O U1 &~ W N =

.eslintignore
.eslintrc
.mocharc.json
.nycrc.json
jest.config.js
register.js
rollup.config.js

113

https://github.com/geometryzen/my-app

rollup.config.mjs
rollup.config.mts
tsconfig.json

typedoc.json
dist/commonjs/index.d.ts
dist/commonjs/src/index.d.ts
dist/commonjs/tests *E
dist/esm/index.d.ts
dist/esm/src/index.d.ts
dist/esm/tests *E
dist/system/index.d.ts
dist/system/src/index.d.ts
dist/system/tests *E
dist/umd/index.d.ts
dist/umd/src/index.d.ts
dist/umd/tests *LE

Publish your package to npm using the command:

npm publish

Consuming the Library

The published package contains bundled JavaScript files and one TypeScript type definition file.

Add a dependency to the package.json file that refers to the @geometryzen/my-1ib package. You can
either add the dependency manually by editing the package.json file or use the Add Dependency tool
in the workspace explorer. If you add the dependency manually then you will need to obtain the
latest version from the https://npmjs.com website. Your package. json file should look like:

~

"description”: "STEMCbook my-1lib Example",
"dependencies": {
"@geometryzen/my-1ib": "0.9.26"
I
"name": "stemcbook-my-1ib-example",
"version": "1.0.0",
"author": "David Geo Holmes",
"private": true,
"keywords": [
"stemcbook",
"my-1ib"

0 ~N o ol B W N -

Once the dependency has been added to the package.json file, the system.config.json file in your
STEMCstudio project should contain the entry point for the JavaScript files:

https://npmjs.com

"@geometryzen/my-1ib": "https://cdn.jsdelivr.net/npm/@geometryzen/my-

1ib@0.9.26/package.json"

The system.config.json file is generated and will only be visible if the Show
o Generated Files option is checked in the Project Settings. This file is readonly
because it is generated by STEMCstudio.

Likewise, the types.config.json file in your STEMCstudio project should contain an entry:
llmapll : {

"@geometryzen/my-1ib": "https://cdn.jsdelivr.net/npm/@geometryzen/my-
1ib@0.9.26/package.json"

The types.config.json file is generated and will only be visible if the Show Generated
o Files option is checked in the Project Settings. This file is readonly because it is
generated by STEMCstudio.

Finally, importing and using a JavaScript resource in your STEMCstudio project will look like:

import { greeting } from "@geometryzen/my-1ib"

const titleElement = document.getElementById('title")
if (titleElement) {
titleElement.textContent = greeting("World")

}

window.onunload = function() {

}

The greeting function has been imported and is called with an appropriate argument. The result is
used to set an element in the HTML DOM.

A.3. Summary

We’ve looked at the desirable features of a JavaScript library and have followed a step-by-step
process to produce an example library. External libraries will be extremely valuable for creating
more sophisticated applications and will make an application consuming the library more

115

manageable.

116

Appendix B: Consuming ES6 Module format
Libraries

B.1. Converting ES6 module format to System

STEMCstudio simulates ES6 modules by transpiling code to the System format. The System format is
functionally equivalent to the ES6 module format and so there is no loss in capability.

STEMCstudio does this so that it can execute code entirely in the browser without
requiring a server-side capability to bundle code and serve it. Requiring a server-
side capability per user can amount to expensive cloud computing resources.

STEMCstudio transpiles TypeScript files in your project on-the-fly into System format and can also
do the same for external JavaScript libraries in ES6 module format. However, because external
libraries are only loaded at execution time, the transpilation can impose a performance penalty.
Moreover, the code that performs the transpilation, typescript.js, has to be available to the System
loader, which would be done by adding a script tag to the HTML file:

<script src="https://path/to/typescript.js">

But typescript.js is a large (approx 10MB) file and so the loading of this file can be slow and can
seriously increase the load time of your application. Using the async or defer attributes to control
the load either does not work or does not affect the performance.

An additional problem that we may have with packages in ES6 module format is that the code is un-
bundled. STEMCstudio is currently unable to consume these un-bundled packages.

B.2. Solution is System module format

Don’t do at runtime what you can do at design time! More concretely, convert your ESM packages to
System format up-front by creating a package that re-exports the artifacts of the original library in
System format. Another benefit of this approach is that you can bundle the TypeScript type
definitions into a file that can be readily consumed by STEMCstudio.

B.3. Wrapping their modules

In this section we take a look at a concrete example of wrapping an ES6 module. In the next section
we’ll look at how to consume it in STEMCstudio.

The @microsoft/fast-components library is in ES6 module format. It has been re-packaged and
bundled into a package @geometryzen/fast-components in System format. You can explore this library
at https://github.com/geometryzen/fast-components. Let’s take a look at some of the more important
aspects of this repository.

The index.ts file simply re-exports everything in the original package. Nothing is subtracted or

117

https://github.com/geometryzen/fast-components

added:

1 export * from '@microsoft/fast-components';

The repository itself is similar in construction to those described in Appendix A. The
rollup.config.mjs file controls the artifacts that are generated. Notice that we only build the System
module format.

resolve from '@rollup/plugin-node-resolve’;

terser from '@rollup/plugin-terser’;

typescript from '@rollup/plugin-typescript’;

dts from 'rollup-plugin-dts';

external from 'rollup-plugin-peer-deps-external’;
pkg from './package.json' assert { type: 'json' };

O ~N O U1 & W N =

const banner = ‘/**

* ${pkg.name} ${pkg.version}

* (c) ${pkg.author}

* Released under the ${pkg.license} License.

*/
otrim();

const options =

input: 'src/index.ts',
output: [
{
banner,
file: './dist/system/index.js’,
format: 'system',
sourcemap: true

banner,
file: './dist/system/index.min.js"',
format: 'system',
sourcemap: true,
plugins: [terser()]
+

1,
plugins: [

external(),
resolve(),
typescript({ tsconfig: './tsconfig.json" })

+;

export default [
options,
{
input: 'node_modules/@microsoft/fast-components/dist/fast-components.d.ts’,
output: [{ file: pkg.types, format: "esm" }],
plugins: [dts()],

In the package.json file, the browser property replaces the main property to show that the module is
meant to be used client-side.

By pointing the browser property to the minified System JavaScript file, the
A unpkg.com CDN will return this file by default. This is undocumented so we should
be careful not to rely on it.

~

"name": "@geometryzen/fast-components”,
"version": "2.30.6",
"description”: "@microsoft/fast-components as a system module",
"browser": "./dist/system/index.min.js",
"types": "./dist/index.d.ts",
"publishConfig": {
"access": "public"

1
2
3
4
5
6
7
8
9

}I

B.4. Consuming your package

If you were to look at the package.json file for @microsoft/fast-components then you would see that
the package has regular dependencies on various other @microsoft/fast-* packages. Because these
are not peerDependencies, we can expect that the package embeds the code from other packages.
Thus, if we consume the module @geometryzen/fast-components then we don’t need to also import
the other modules in order to ensure that our application runs correctly.

However, if you were to look at https://unpkg.com/@geometryzen/fast-components@0.9.6/dist/
index.d.ts then you would see that the index.d.ts file that is shipped with @geometryzen/fast-
components imports from @microsoft/fast-elements, @microsoft/fast-foundation, and
@microsoft/fast-web-utilities. So if we want a complete developer experience in the STEMCstudio
IDE then we need to ensure that the typings files for these modules are available.

But how can we consume the @geometryzen/fast-components module to get the correct runtime

119

https://unpkg.com/@geometryzen/fast-components@0.9.6/dist/index.d.ts
https://unpkg.com/@geometryzen/fast-components@0.9.6/dist/index.d.ts

behavior and at the same time get the corect developer experience in the STEMCstudio IDE?

The trick is to code our application as if it is consuming the original @microsoft/fast-* modules, but
map these modules onto the wrapped implementations. Let’s look at an example that uses both
fast-components and fast-elements

You can study this project directly at https://www.stemcstudio.com/gists/
ealb221a5193f1731e5c¢7b2737999b24.

The main application file, index.ts, uses the @microsoft/fast-components module directly to register
FAST custom components as well as a custom component that is defined in the NameTag.js file.

import {
allComponents,
baselLayerLuminance,
provideFASTDesignSystem,
StandardLuminance,
Switch

} from "@microsoft/fast-components"

import { NameTag } from "./NameTag.js"

const designSystem = provideFASTDesignSystem()
designSystem.register(allComponents)
designSystem.register(NameTag)

const toggle = document.getElementById('toggle') as Switch

const updateLuminance = function() {
baseLayerLuminance.setValueFor (
document.body,
toggle.checked ? StandardLuminance.LightMode : StandardLuminance.DarkMode

}
updateLuminance()
toggle.addEventListener('click', updateLuminance)

window.onunload = function() {
toggle.removeEventListener('click', updatelLuminance)

}

The NameTag.ts file is using the @microsoft/fast-element module.

1 import { attr, customElement, FASTElement, html } from "@microsoft/fast-element"
2 import type { ViewTemplate } from "@microsoft/fast-element"

3

4 const template: ViewTemplate<NameTag> = html<NameTag>'

https://www.stemcstudio.com/gists/ea1b221a5193f1731e5c7b2737999b24
https://www.stemcstudio.com/gists/ea1b221a5193f1731e5c7b2737999b24

<div class="header">
<h3>Hello, ${(x: NameTag) => x.name}!</h3>
</div>
<div class="body"></div>
<div class="footer"></div>

@customElement ({
name: 'name-tag',
template

}
export class NameTag extends FASTElement {

(I}

@attr name =

nameChanged() {
}

connectedCallback() {
super.connectedCallback()

}

So we need both the @microsoft/fast-components and @microsoft/fast-element modules, and we
need to map them to our System module implementations.

We also need the @microsoft/fast- type definitions to be mapped to our @geometryzen/fast-
implementations. We map as many modules as we need to allow the STEMCstudio IDE to infer the
types correctly.

We do this in studio.config.json.

—~

"hideConfigFiles": false,
"hideReferenceFiles": true,
"linting": true,
"noLoopCheck": true,
"operatorOverloading": false,
"overrides": [

{

"name": "@microsoft/fast-components"”,
"version": "2.30.6",
"system": "https://cdn.jsdelivr.net/npm/@geometryzen/fast-
components@2.30.6/dist/system/index.min.js",
"types": "https://cdn.jsdelivr.net/npm/@microsoft/fast-
components@2.30.6/package.json"
I
{

—_ SO VW 00O NO Ul &~ W N =

—_ — =
No

R N —
S W

15 "name": "@microsoft/fast-element",

16 "version": "1.12.0",

17 "system": "https://cdn.jsdelivr.net/npm/@geometryzen/fast-
element@0.9.9/dist/system/index.min.js",

18 "types": "https://cdn.jsdelivr.net/npm/@microsoft/fast-
element@1.12.0/package.json"

19 ¥

20 {

21 "name": "@microsoft/fast-foundation",

22 "version": "2.49.5",

23 "system": "https://cdn.jsdelivr.net/npm/@geometryzen/fast-
foundation@2.49.5/dist/system/index.min.js",

24 "types": "https://cdn.jsdelivr.net/npm/@microsoft/fast-
foundation@2.49.5/package.json"

25 }

26 5

27 "references": {},

28 "showGeneratedFiles": false

29 }

B.5. Summary

We now understood the performance problem associated with loading external ES6 module
packages and how to solve them by re-bundling in System format.

122

Appendix C: Operator Overloading

C.1. What is Operator Overloading?

When you perform an arithmetic operation such as 2 + 2, or x + 1 where x is a number type, the
JavaScript interpreter is able to quite happily perform the computation. But what happens if you
want to define a mathematical object (such as a vector which is therefore not a primitive number),
and you want that object to have sensible behavior when it interacts with mathematical operators?
In other words, what we are trying to do is to give the operator additional behavior when it is
encountered with certain operands, which is why it is called operator overloading.

C.2. How it Works

Operator Overloading is typically performed by running JavaScript code through a transformation
step that injects special code in place of normal operators.

Operator Overloading is not implemented in standard JavaScript. The reason for this is that
JavaScript performance would suffer because JavaScript does not provide type information for the
runtime system to optimize code.

Experiments by a number of implementers show the surprising result that such a bolt-on Operator
Overloading implementation only affects overall performance by around 5%. This makes it very
acceptable in an education or research environment.

STEMCstudio implements operator overloading in this way, but also makes it possible to turn
Operator Overloading on or off using a project-level switch.

STEMCstudio recognizes a wide range of operators for overloading, and by using a standard
approach makes it possible for users to implement their own mathematical objects with operator
overloading. In addition, STEMCstudio adjusts the precedence of operators to conform with the
notation standards of Geometric Algebra so that parenthesis may be dropped for clarity.

C.3. Code transformation for Operator Overloading

In STEMCstudio, a special transformation step takes place after the TypeScript code has been
transpiled to JavaScript. This step replaces operators by function calls that inspect their arguments
for special dunder (double underscore) methods on objects. For example, suppose that we have the
following TypeScript code:

This code would be transformed to:

123

The add function takes two arguments a, and b. add is a standard function built into a library that is
included by STEMCstudio if Operator Overloading is requested. The add function looks to see if a is
an object and whether it has the special dunder method add. If so, the add function executes the
code:

.__add__(b)

The add method may veto the call (effectively saying that it cannot perform the action) by returning
undefined (or void 0). If the method invocation is not vetoed and a result is returned then this is the
result of a + b. If the method invocation is vetoed then the add function will try:

This is the right-addition version of the same a + b expression, except that b gets a chance to handle
the execution. This left or right handed invocation of addition makes sense when you consider that
one type may know about another but not the other way around.

Finally, if these special methods don’t exist or the invocations are vetoed, the add function falls back
to simply calling a + b. At this point, the JavaScript runtime takes over, possibly coercing the
arguments of the + operator to number before performing the addition.

Operator Overloading exists for both binary operators and unary operators.

C.4. Binary Operators

The following table summarizes the binary operators, their meaning, and the dunder methods.

+ addition __add__ __radd__

- subtraction __sub__ __rsub__

* multiplication _mul__ __rmul__

/ division _div__ __rdiv__

<« left contraction __Lshift__ __rshift__

>> right contraction __rshift__ __rrshift__
scalar product __Vvbar__ __rvbar__

" exterior product __wedge__ __rwedge__

=== equality __€q__ __req__

t== inequality __Ne__ __rne__

o= greater than or equal -9 __ __rge__

> greater than _gt__ __rgt__

<= less than or equal _le__ _rle__

< less than Lt _rit__

124

C.5. Unary Operators

The following table summarizes the unary operators, their meaning, and the dunder method.

~ reversion __tilde__
! i ban

- inverse __bang__
B unary minus __nheg__

+ unary plus __pos__

C.6. Operator Precedence

When Operator Overloading is enabled in STEMCstudio, the precedence of operators is adjusted to
conform to the norms for geometric algebra. In particular, the contraction operators and scalar
product bind to their arguments the most tightly. The exterior or wedge product binds less tightly
but more tightly than multiplication. As always, multiplication binds more tightly than addition. If
in doubt, or the expression is esoteric, use parenthesis. However, as in mathematics notation,
precedence rules exist to make mathematical expressions more readable.

C.7. Example Complex number class

The following complex number class implements binary addition, binary multiplication, and unary
minus.

export class Complex {
constructor(public readonly real: number, public readonly imag: number) {
}
__add__(rhs: Complex | number): Complex | undefined {
if (typeof rhs === 'number") {
return new Complex(this.real + rhs, this.imag)

}

else if (rhs instanceof Complex) {
return new Complex(this.real + rhs.real, this.imag + rhs.imag)
}
else {
return void 0
}

}
__radd__(1lhs: number): Complex | undefined {

if (typeof lhs === 'number"') {
return new Complex(lhs + this.real, this.imag)
+
else {
return void 0
}
}

__mul__(rhs: Complex | number): Complex | undefined {
if (typeof rhs === 'number") {

125

25 return new Complex(this.real * rhs, this.imag * rhs)
26 }
27 else if (rhs instanceof Complex) {
28 const x = this.real * rhs.real - this.imag * rhs.imag
29 const y = this.real * rhs.imag + this.imag * rhs.real
30 return new Complex(x, y)
31 }
32 else {
33 return void 0
34 }
35 }
__rmul__(lhs: number): Complex | undefined {
37 if (typeof lhs === 'number"') {
38 return new Complex(lhs * this.real, lhs * this.imag)
39 }
40 else {
41 return void 0
42 }
43 }
44 __neg__(): Complex {
45 return new Complex(-this.real, -this.imag)
46 }
47 toString(): string {
48 return ‘${this.real} + ${this.imag} * i‘
49 }
50 }
51
52 export function complex(x: number, y: number): Complex {
53 return new Complex(x, y)
54 }

Notice that the dunder methods do not mutate their object instance (this). This results in expected
behavior and is strongly recommended. In contrast, you may sometimes wish to make
mathematical objects mutable. This should only be done in performance critical applications such
as graphics where the creation of temporary objects would result in extra work for the JavaScript
garbage collector. Even in such cases, the dunder methods should not mutate, but you may define
non-dunder custom methods that do.

In general you should make your mathematical objects immutable so that operations do not have
side-effects and make it easy to reason about values.

C.8. Summary

We have seen what Operator Overloading is, how it is implemented in STEMCstudio, and a detailed
example. You can now experiment with your own implementatins in STEMCstudio.

126

	STEMCbook: How to Author Learning Experiences using STEMCstudio
	Table of Contents
	Introduction
	Foreword
	Who Should Read This Book
	How To Report Bugs and Suggest Enhancements
	About David Geo Holmes

	Chapter 1. Getting Started
	1.1. Your First Project
	1.2. How It Works
	1.3. Writing and Calling Internal Modules
	1.4. Using NPM Packages (a.k.a. External Modules or Libraries)
	1.5. Summary

	Chapter 2. Learning Tools Interoperability
	2.1. What is Learning Tools Interoperability?
	2.2. Dynamic Registration
	2.3. Deep Linking
	2.4. Programming API
	2.5. Summary

	Chapter 3. Useful STEM Libraries
	3.1. 2D Scalable Vector Graphics with g20
	3.2. 2D Diagramming with JsxGraph
	3.3. 3D Graphics with Eight
	3.4. Data Visualization with Plotly
	3.5. Charting with Chart.js
	3.6. Symbolic Mathematics using STEMCmicro
	3.7. Rendering Mathematics in STEMCstudio
	3.8. Rendering Mathematics with MathJax
	3.9. Rendering Mathematics with KateX
	3.10. Code Editing using monaco-editor
	3.11. LMS Gradebook Integration
	3.12. Numeric Vector and Geometric Algebra
	3.13. Simulations and the Physics Engine
	3.14. Summary

	Chapter 4. Application Frameworks
	4.1. What is a Web Application Framework?
	4.2. Nothing
	4.3. Web Components
	4.4. React
	4.5. SolidJS
	4.6. Svelte
	4.7. Summary

	Appendix A: Authoring JavaScript Libraries
	A.1. Best Practices
	A.2. Step by Step Guide
	A.3. Summary

	Appendix B: Consuming ES6 Module format Libraries
	B.1. Converting ES6 module format to System
	B.2. Solution is System module format
	B.3. Wrapping their modules
	B.4. Consuming your package
	B.5. Summary

	Appendix C: Operator Overloading
	C.1. What is Operator Overloading?
	C.2. How it Works
	C.3. Code transformation for Operator Overloading
	C.4. Binary Operators
	C.5. Unary Operators
	C.6. Operator Precedence
	C.7. Example Complex number class
	C.8. Summary

